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S T O C H A S T I C  R E S P O N S E  W I T t t  B I F U R C A T I O N S  TO N O N - L I N E A R  
D U F F I N G ' S  O S C I L L A T O R  

Some classes of non-linear Fokker-Planck-Kolmogorov equations with bifurcating 
solutions have recently appeared in the literature [1, 2]. However, these equations are 
characterized by unusual drift forces and diffusion coefficients. In what follows here it 
will be shown that a response with bifurcation is possible for a non-linear Duffing 
oscillator, and that the probability density function of this response can be calculated 
numerically. This type of distribution function is characterized by multiple maxima and 
tends to be intrinsically non-Gaussian. 

Consider the non-linear Duffing oscillator, 

j~+ k ) +  a y +  by a= ex, (I) 

where k is the (positive) damping factor, a and b are linear and non-linear stiffness 
coefficients, e is a constant, and x is a stochastic process given by the filter equation 

E+ 12 + x = n( t ) ,  (2) 

where I is the damping factor and n(t )  is white noise with (n(t))=0 and ( n ( t ) n ( t + ~ ' ) ) =  
DS(t ) ;  D is constant and (-) indicates the ensemble average. 

After the transformation x l = y ,  x2=P, Xa=X and x4=~, equations (l) and (2) have 
the form 

:~2 = - a x t - k x 2 + x 3  0 0 - ~ + . (3) 
"~3 0 0 X 4 

Y~4 0 - x 3 -  Ix4 0 0 J n( t )  

With the probability density function denoted by P(Xh  X2, X3, X4/X,o, X20, X30, X40, t) 
where Xlo, X2o, X3o and X4o are the initial conditions, the Fokker-Planck-Kolmogorov 
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Figure 1. Amplitude probability density function 1 = 0.2, e = 50, D = 1. A Path-integral solution; B, digital 
Monte-Carlo simulation; C, polynomial approximation. (a) a = 0-94, b = 3.5; (b) a = 0-3, b = 6.0. 
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equation satisfying equation (3) becomes 

Ot Ox~ [x2P] - [ ( - a  - kx2 + ex3 - bx~)P] + [x4P] 

0 D 02P 
- Ox--~4 [ ( - x 3  - lx4)P] +-~ Ox--~4" (4)  

This equation for the steady state was solved numerically by the path-integral method 
1"3]. The probability density functions obtained are shown in Figure l(a) and (b). These 
probability density functions were compared with the results obtained by digital Monte- 
Carlo simulation. The same example as in Figure l(a) was investigated by Tagata [4] 
who compared the result of the digital simulation with that from polynomial approxima- 
tion, which does not produce the concave region in the amplitude probability density 
characteristic. The method of path-integral solution of the Fokker-Plank-Kolmogorov 
equation (4) gives the solution process with bifurcation, which explains the jump 
phenomena observed in real non-linear systems. 

In a future paper the author hopes to present the complete bifurcation diagram for 
such a non-linear system. 
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