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LETTER TO THE EDITOR

A PROPERTY OF A STOCHASTIC RESPONSE WITH BIFURCATION
OF A NON-LINEAR SYSTEM

In the following an interesting analogy between the stochastic stationary response with
bifurcation of a non-linear system perturbed by white noise and the bifurcation diagram
of the unperturbed system is reported. For the chaotic movement of a non-linear system,
the chaotic probability density functions have been obtained.

A stochastic process with bifurcation is understood to mean a random process given
by a bifurcation solution of the non-linear Fokker-Planck-Kolmogorov equation [1, 2].
This type of probability density function (see Figure 1) is characterized by two maxima
and tends to be intrinsically non-Gaussian.
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Figure 1. Probability density function of a stochastic process with bifurcation.

Consider the non-linear system given by the equation
(d/d)f(x, 1, 1) =0, (1)

where x=col[x,, ..., x,] is the vector of co-ordinates, f=col[ f,, ..., f,], t€[0, ©) is time
and A is the bifurcation parameter. The system is assumed to be perturbed by white noise,
so that the equation of motion has the form

(d/dn)f(x, 1, A) =w(1), (2)

where w(t)=col[w,(2),..., w,(2)], wi(t), i=1,...,n, being a stochastic process with
zero mean and the correlation function (w;(t)w;(¢"))= Dé(t —t'), (w,()w;(¢))=0, i=j, in
which () indicates the ensemble average. The Fokker-Planck-Kolmogorov equation
for the stationary state probability density function P(x,, ..., X,| X0, - - - , Xa0, A), Where
X105 - - - » Xno are the initial conditions of the perturbed system, has the form

—(8/3x)[ K —%(a/axj)oij]P =0, (3)

where K;(x) is the drift vector and %Qi,-(x) is the diffusion tensor; repeated indices imply
a summation.
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Figure 2. Model of the system. k, torsional stiffness; m, mass; I, length of the massless beam.

The probability density function of the system (2) can be calculated from the above
equation by the path-integral method [3].
As a first example consider the system shown in Figure 2, for which
Xy =X, X,=—ax,;— A sin x,, (4)
where x, =x, x, =X, a=k/ml* and A = P/ml, for which the perturbed system is
X, =X, X, =—ax,— A sin x, + w(t), (5)

where w(t) is a white noise. The stationary state F-P-K equation for the system (5) has

the form
—(8/8x,)[x,P]—(8/3x,)[(—ax, — A sin x,) P]+(D/2)9*P/ax% =0, (6)

where P(x;, x,| X0, X290, A) is the probability density function. The calculated amplitude
probability density functions for different values of the bifurcation parameter A,

[ o

P(xl,A)=J P(xl9x2aA)dx1’

are presented in Figure 3. The projection of the maxima of this function on the amplitude-
bifurcation parameter plane gives the well known bifurcation diagram of the unperturbed
system [4].

As another example consider the forced non-linear pendulum described by

X3 =X,, X, = —ax,— A sin x,+ b cos wt. )

Probability density
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Figure 3. The analogy between stochastic bifurcation of the perturbed system and the bifurcation of the
unperturbed system: a =2-0, D =0-5.
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When one sets x; = b cos wt then x; is the solution of the initial value problem
X3 =Xy, Xg= —0°X, (8)
x3(0)=b, x4(0) =0, ()]

so that the following equations are equivalent to equations (7) with the initial values (9):

X=Xy,  Xy=—axp—Asinx;t+x;, X=X, x4=—w2}§3. (10)

The perturbed system has the form:

X =Xx,, X, =—ax,— A sin x, + x;+ w(t),

X3 = Xa, )é4=—w2x3, (11)

where w(t) is a white noise as before. The Fokker-Planck-Kolmogorov equation for the
stationary state probability density function P(x,, X, X5, X4| X10, X20, b, 0, A) has the fol-
lowing form in this case:

P

8 ] . ) ] D&
—a; [x,P] —-g‘; [(=ax,— A sin x;+ x;) P] —'a—;; [x4P] —-g‘; [—w2x3P]+38—x§. (12)

The amplitude probability density function is given by

P(x1,A)=I J' I P(x,, X3, X3, X4| X190, X20, b, 0, A) dx, dx; dx,.
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If one chooses parameters such that the unperturbed system produces chaotic movement
{5] one obtains the chaotic probability density functions shown in Figure 4.
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Figure 4. Examples of the chaotic probability density functions: a=1-0, b=1:5, A =4-0, w =0-25, D=0-5,
A/x,0=0, x30=0, B/x,0=0, X50=0-1.

This property of the stationary state probability density function of the stochastic
response of a non-linear system perturbed by white noise can be very useful for calculating
the bifurcation diagrams and searching for the chaotic solutions of non-linear systems.
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