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LETTER TO THE EDITOR 

A PROPERTY OF A STOCHASTIC RESPONSE WITH 
OF A NON-LINEAR SYSTEM 

BIFURCATION 

In the following an interesting analogy between the stochastic stationary response with 
bifurcation of a non-linear system perturbed by white noise and the bifurcation diagram 
of the unperturbed system is reported. For the chaotic movement of a non-linear system, 
the chaotic probability density functions have been obtained. 

A stochastic process with bifurcation is understood to mean a random process given 
by a bifurcation solution of the non-linear Fokker-Planck-Kolmogorov equation [ 1,2]. 
This type of probability density function (see Figure 1) is characterized by two maxima 
and tends to be intrinsically non-Gaussian. 

Figure 1. Probability density function of a stochastic process with bifurcation. 

Consider the non-linear system given by the equation 

(d/dt)f(x, t, A) = 0, (1) 

where x = col[x, , . . . , x,] is the vector of co-ordinates, f = col[f, , f] tE[O,co)istime .a*, n , 

and A is the bifurcation parameter. The system is assumed to be perturbed by white noise, 
so that the equation of motion has the form 

(dldr)f(x, r, A) =w(t), (2) 

where w(~)=co~[w~(~) ,..., w.(t)], W,(t), i=l,..., n, being a stochastic process with 
zero mean and the correlation function (Wi( t)wi( t’)) = DS( t - t’), (Wi( t) Wj( t)) = 0, i =j, in 
which ( *) indicates the ensemble average. The Fokker-Planck-Kolmogorov equation 
for the stationary state probability density function P(x,, . . . , x, Jxlo, . . . , xno, A), where 
x10,. * *, xno are the initial conditions of the perturbed system, has the form 

-(a/aXi)[Ki-~(a/aXj)Qij]P=O, (3) 

where Ki(x) is the drift vector and &,(x) is the diffusion tensor; repeated indices imply 
a summation. 
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Figure 2. Model of the k, torsional stiffness; m, mass; 1, length of the 

The probability density function of the system (2) can be calculated from the above 
equation by the path-integral method [3]. 

As a first example consider the system shown in Figure 2, for which 

f, = x2, z$ = -ax, - A sin x, , (4) 

where x, = x, x2 = i, a = k/ml2 and A = P/ml, for which the perturbed system is 

1, = x2, $ = -ax, -A sin x, + w(t), (5) 

where w(t) is a white noise. The stationary state F-P-K equation for the system (5) has 
the form 

-(d/ax,)[x,P]-(d/dx,)[(-ax,-A sinx,)P]+(D/2)a*P/ax:=O, (6) 

where P(x, , x2 I x10, x2o, A) is the probability density function. The calculated amplitude 
probability density functions for different values of the bifurcation parameter A, 

i 

m 
P(x,,A)= P(x, , ~2, A) dx,, 

--oo 

are presented in Figure 3. The projection of the maxima of this function on the amplitude- 
bifurcation parameter plane gives the well known bifurcation diagram of the unperturbed 
system [4]. 

As another example consider the forced non-linear pendulum described by 

)5,=x2, f,=-ax2-A sinx,+bcoswt. (7) 

Bifurcation parameter 

Figure 3. The analogy between stochastic bifurcation of the perturbed system and the bifurcation of the 
unperturbed system: (I = 2.0, D = 0.5. 
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When one sets x3 = 6 cos of then x3 is the solution of the initial value problem 

x3=x4, i4= --w2x , o-0 

x3(0) = 6, x4(0) = 0, (9) 

so that the following equations are equivalent to equations (7) with the initial values (9): 

x1=x2, _t2=-ax2-A sinx,+x,, x3=x4, x.4=--02x3. (IO) 

The perturbed system has the form: 

x1=x2, i2= --x2-A sinx,+x,+ w(t), 

xs=xq, x~=-l.02x3, (11) 

where w(t) is a white noise as before. The Fokker-Planck-Kolmogorov equation for the 
stationary state probability density function P(x, , x2, x3, x4 1 x,~, xzo, b, 0, A) has the fol- 
lowing form in this case: 

-$b2WT3- ax,-A sinx,+x,)P]---&[x,P]-$[-w’x,P]+$)$. (12) 
1 2 3 4 2 

The amplitude probability density function is given by 

P(x,, A) = p(xl, x2, x3, x4jx lo, x20, h 0, A) dx2 dx3 dx4. 

If one chooses parameters such that the unperturbed system produces chaotic movement 
[5] one obtains the chaotic probability density functions shown in Figure 4. 

Figure 4. Examples of the chaotic probability density functions: a = 1.0, b = 1.5, A = 4.0, o = 0.25, D = O-5, 
A/x,, = 0, xsO = 0, B/x,, = 0, xZO = 0.1. 

This property of the stationary state probability density function of the stochastic 
response of a non-linear system perturbed by white noise can be very useful for calculating 
the bifurcation diagrams and searching for the chaotic solutions of non-linear systems. 
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