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LETTERS T O  TIdE E D I T O R  

RESPONSE OF A NON-LINEAR SYSTEM TO TWO-STEP MARKOV NOISE: 
NON-MARKOVIAN AVERAGING 

1. INTRODUCTION 

The study of the influence of  random forces on non-linear systems is a very practical 
problem. Problems of  this type are of great importance in many  branches of  science and 
engineering because no real physical system is free of  noise and most of  them are 
non-linear. The increased interest in stochastic systems has stimulated not only mathemati-  
cal works [l ,  2] but also investigations of  applications [3-5]. 

In recent years the stochastic averaging method has been developed. This method is 
based on the well-known Krylov-Bogoliubov-Mitropolski i  technique for solving deter- 
ministic non-linear vibration problems [6] and the Stratonovich-Khasiminskii  limit 
theorem for stochastic differential equations [4]. This method allows one to calculate the 
Markovian approximate  response ofthe system and requires the fulfilment of  the following 
assumptions. (1) The damping is light and the envelope of the excitation power spectrum 
is scaled accordingly, so the oscillation varies slowly with respect to time and can be 
treated as a constant over an appropriate period of oscillation. Consequently, oscillatory 
terms can be approximated by their temporal averages over one period of oscillation. (2) 
With light dampingand  a broadband random excitation the relaxation time of the  oscillator 
response is much greater than the correlation time of  the excitation, so it is possible to 
model the power input due to the excitation as a non-zero mean component  plus an 
additional fluctuating component  with the character of  white noise. The first assumption 
is the same as in deterministic procedure; the second one is necessary to satisfy the 
conditions of  the Stratonovich-Khasiminskii  limit theorem. 

In what follows an averaging procedure which differs from Markovian one in the 
second of  the above assumptions is described. In a non-Markovian case the fluctuating 
component  has the form of a non-Gaussian two-step Markov noise which can be useful 
for many problems of  automatic control. An example of  its realization is shown in 
Figure 1. It has a zero-mean and the correlation function is 

(rl(t) r/(t')) ='za 2 exp [ -A It- t'l], (1) 

where A and A are constant, ( �9 ) indicates an ensemble average, and there are two possible 
values +z.1 with equal probability, and jumps with probabil i ty �89 dt for each dr. 

In the case of  this form of  fluctuation the system response is non-Markovian and an 
approximate  solution can be obtained based on the theory of  non-Markovian stochastic 
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Figure I. Realization of the two-step Markov noise. 
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differential equations [7, 8] in a similar way as in references [9, 10]. The closed system 
of  linear partial differential equation for the probability density of  the response can be 
obtained. In the case o f  a stationary state this system has a solution given in explicit form 
which can be used for many practical problems. This method allows one to determine 
the dependence of the response on both parameters of  the stochastic process: A and A. 

In the white noise limit of  the process r/(t) the non-Markovian averaging procedure 
gives the same results as ordinary stochastic averaging. 

2. AVERAGING PROCEDURE 

Consider an autonomous oscillating system with one degree of  freedom which is subject 
to two-step Markov noise r/(t) and is described by the second order differential equation 

dZx/dt2 + o)2x =" E f I ( X  , dx/dt)  + vt-i~rfz(x, dx/dt)rl(t),  (2) 

where e is a small parameter, w and o- are constants, andf~ and f2 are non-linear functions 
satisfying all the necessary conditions, which can depend periodically upon the time t. 
Equation (2) is a quasilinear differential stochastic equation of  a two dimensional non- 
Markovian process. 

Due to the smallness of  the parameter e, the application of  Krylov-Bogoliubov- 
Mitropolskii asymptotic method is possible. This method leads from equation (2) to a 
system of  first order equations in terms of  the amplitude and phase of  random oscillations. 
To obtain this system the following change of  variables is done: 

x=a( t )  costp, dx/dt=-a(t)wsin~O, ~9=wt+~(t). (3) 

Here the amplitude envelope process a(t) and phase process r  are slowly varying 
with respect to time, when e is small. In terms of  a and ~o equation (2) can be cast into 
the following pair of exact equations: 

da/dt  = - (e /w) f l (a  cos ~, - a ~  sin ~) sin ~, 

-(vt'eo'/w)f2(a cos if, - a w  sin 0) sin 0 rt(t), 

dr  = -(e/aw)f l (a cos ~p, -aoJ sin 0) cos ~p 

-(,r cos ~, -a~o sin ~) cos Cr/(t). (4) 

Equations (4) are equivalent to equations (2) and also represent a two-dimensional 
non-Markovian process. The complete averaging according to Kolomietz [11] can be 
applied and as the averaged system of stochastic differential equations, corresponding to 
system (4), one will obtain 

da/dt=fl(a)+f2(a)71(t),  d~/dt=f3(a)+f4(a)~( t ) ,  (5,6) 

where 

J 'O rt f l (a)  = - e--ft(a cos ~, - a w  sin 0) sin r dO, 
W 

//'2~- 2 
f 2 ( a )  = "~/Jo ~-_f~(acosr 

~0 'rt f } a )  = - e--L'fj(a cos 0, - a w  sin ~O) cos @ de, 
aoJ 

~ I O  !~ COT2 .~ f4(a) = ~ f ~ ( a  cos ~, -aoJ sin O) cos20 de. 
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Under certain conditions the solution of system (5) is reduccd to that of system (4) in 
the sense of root-mean-square convergence of stochastic variables. 

3. PROBABIL ITY  D E N S I T Y  OF T H E  RESPONSE 

An inspection of equation (5) shows that the amplitude process a is uncoupled from 
the phase process ~: i.e., a is a one-dimensional non-Markovian process. The probability 
density function for a, P(a, t l ao, to) where ao and to are initial conditions, can be obtained 
from the stochastic Liouviile equation [1] for the density p(a, tlao, to) of a set of 
realizations of equation (5): 

/~(a, t l ao, to)= -(a/aa){f,(a)+f2(a)~l(t)}p(a, tlao, to). (7) 

Taking the average over "0(t) and using Van Kampen's lemma [8] 

P(a, tlao, to) = (p(a, tiao, to)), (8) 

one obtains 

aP(a, t lao, to)/at = -(a/aa)fl(a)P(a, tlao, to)-(a/aa)f2(a)P~(a, tlao, to), (9) 

where P,(a, tlao, to)= rl(t)p(a, tlao, to). Since p(a, tlao , to) is a functional of r/(t), one 
can use the formula of  differentiation of Shapiro and Loginov [1], 

(o/at)(~(t)qg[~(t)])= -A(rl(t)d)[~l(t)])+(~7(t)(a/Ot)~[~l(t)]), (10) 

where q'[rl(t)] is a functional of "0(t) and the average is over the distribution of r~(t), 
to obtain an equation for P,(a, tlao, to): 

_ 
aP,(a, attl ao, t o ) - A P , ( a ,  t l ao, to)-Taf ,(a)Pt(a,  t l ao, to) 

-~af2(a),a2P(a, tlao, to). (11) 

In equation (11) the fact has been used that the square of rl(t) is constant: rt2(t) = A 2. 
Equations (9) and (11) give a closed system of  linear partial differential equations, the 

solution of which will give the amplitude probability density function P(a, tlao, to) 
provided that the initial condition P(a, tlao, to)l,=,o is known, and also another initial 
condition because there are two linear equations. The second condition obtained by 
assuming statistical independence between rl(t) and p(a, t lao, to) at t = to; i.e., 

07(t)p(a, t l ao, to))l ,=,o = Pt(a, tol ao, to) = 0 (12) 

which implies in equation (9) that 

aP(a, t[ao, to)/at)-(a/aa)fl(a)P(a, tlao, to)l,=,o= 0. (13) 

This, together with, 

P(a, t l ao, to)l,~ ,o = ~(a - ao) (14) 

are then the initial conditions of the system (9) and (11). 
Formal integration of equation (9) gives 

f [( ) P,(a, tlao, to )=-a  2 exp - A + a  f , ( a )  ( t - t ' )  
�9 ,to aa  

-~-~a f2(a)P(a, t'iao, to)] J d t ' =  -A2T(a,  t), (15) 
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where expression (12) has been used. Substituting expression (15) into equation (11) 
gives a formal equation for P(a, tlao, to): 

~P( a, t l a o ,  to)= 
r,(a)P(a, tlao, to)+ `42 ~af2(a)T(a,  t). (16) 

t~ t ~ a ~ 

The time-dependent solution is not always known, but one can obtain the stationary 
state solution in the form: 

P , ( a l a o ) =  N A : f ~ ) ~ - f ? ( a )  eXp _ oA2f~(a,)_f~(a,)  J, (17) 

where the constant N is found by using the normalization function P,,(alao). 
If, in equation (15), one puts 

exp [-A It - t'l] --- (2/X) ~,(t- t') (18) 

one obtains the white noise limit for a(t). This limit holds for A--,co, .4 ~oo and .42/A 
finite. In this case equation (16) has the standard form of the Fokker-Planck-Koimogorov 
equation: 

~P(a, tlao, to)= 
- _-mTt(a)P(a,aoa_ tla~ t~ 2f~(a)P(a'  t[ao, to). (19) 

t3t 

In the white noise limit o f a  Gaussian process r/(t) the non-Markovian averaging method 
converges to the Markovian one. 

By following the same method (equations (7)-(11)) it is possible to obtain the equations 
for the joint probability density of the amplitude a and the phase 9. In this case the 
equations equivalent to equations (9) and (11) have the form 

OP(a, cp, tlao, ~po, to) ~ _ 
,gt - - ~ a  f ' (a )P(a '  ~" t la~  'Po, to) 

'~ f3(a)e,(a,  r tlao, ~o, to) 

- 
+-~af2(a)P(a, 9, t l ao, ~o, to) 

c3 - 
+-~-~ f4(a)Pt(a, ~, tl ao, r to), (20) 

where P~(a, ~, tlao, q'o, to) =Oq(t)p(a, ~,, tlao, r to)) and 

aPt(a, ~, t lao, ~o, to)/~'~t 

= -APt(a,  ~, tlao, ~o, to)-(a/aa)f~(a)Pt(a,  ~, tlao, r to) 

-(a/a~)f3(a)P,(a,  ~, tl ao, ~o, to)-(a/aa)f2(a).42P(a, ~, tl ao, ~o, to) 

-(,Vag)f4(a).42P(a, ~, t] ao, ~o, to). (21) 

The initial conditions are equivalent to expressions (12) and (14): 

P,(a ,~ , t lao ,~o ,  to)l,o,o=O, P(a ,~ , t lao ,~o ,  to)] ..... = ~i(a-  ao) ~ ( ~ -  ~Oo). (23,23) 

In general, the analytical solution of equations (20) and (21) is unknown but these 
equations can be very useful in numerical analysis of many vibration problems. 
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4~ EXAMPLE 

As an example consider Van der Pol's equation subjected to the two-step Markov noise 
in the form 

d2t /d t2  + (1 +x/-{tro( t ) ) x  = e(1 - x  2) d x / d t .  (24) 

Appl ica t ion  o f  the averaging procedure gives the following averaged equation for the 
ampl i tude  envelope process:  

d a /  dt  = (ea /2) (1  - a 2 / 4 ) +  (x/-etra/2x/2) Tq( t). (25) 

This has the same form as equat ion (5), so by taking into accoun t  the initial condi t ions  
(12)-(14) the ampli tude probabil i ty density funct ion for a s ta t ionary state can be calculated 
f rom equat ion (17). 

Numer ica l  examples  o f  the ampli tude probabi l i ty  funct ion for  different values o f  A - '  
are shown in Figure 2. It is found  that with the increase o f  the correlat ion time the mean  
value o f  the ampli tude increases. 
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Figure 2. Amplitude probability density function for different values of A-:: ~r= l, e =0.l, A =0.1. 
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