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STRANGE NON-CHAOTIC ATTRACTORS OF A QUASI-PERIODICALLY FORCED 
VAN DER POL’S OSCILLATOR 

1. INTRODUCTION 

Theoretical investigations of periodically forced non-linear systems have been of great 
interest from a number points of view for many years. Recently some investigations of 
systems with quasi-periodic forcing has appeared: Steeb et al. 1986 [ 11, Kapitaniak et al. 
1987 [2], Romeiras and Ott 1988 [3], Kapitaniak 1988 [4], Kapitaniak and Wojewoda 
1988 [5], Wiggins 1987 [6]. In these investigations, besides the typical behaviour of 
periodically forced systems, some new phenomena were found such, as weakening of 
chaos [l, 21, combined bifurcations [4], and strange non-chaotic attractors [3,5], which 
seem to be characteristic for this kind of system. 

In what follows, we give new examples of strange non-chaotic attractors of the Van 
der Pol oscillator 

a+d(12-1)~+X=acos(wt)cos(nt), (1) 

where a, d, o and R are constants and describe its main properties. Equation (1) has a 
four-dimensional phase space: (i, x, 0, = wt, O2 = at) E R2 x S’ x S’. One can reduce the 
study of (1) to the study of associated three-dimensional PoincarC map obtained by 
defining a three-dimensional cross-section of the four-dimensional phase space by fixing 
the phase of one of the angular variables and allowing the remaining three variables that 
start on the cross-section to evolve in time under the effect of the flow generated by 
equation (1) until they return to the cross-section. If one fixes the phase O2 the PoincarC 
map is defined as a set 

M(t,)={x(t,),I(t,),0,(t”)~r”=(2~~/n)+to, n=l,2,...}, 

where t is initial time. To describe the surface of the PoincarC map one plots x( t,) versus 
a( r,) and x( t,,) versus O,( t,) mod 27r. An alternative surface can be obtained by plotting 
a?(&,) versus O,( r,,) mod 27r. 

Of course, to characterize the attractor one also uses maximum Lyapunov exponents 
given by 

*=!itn{iln($$)}. 

where d = 1 y2 + j’]“’ and y denotes the solution of the equation variational to equation 
(1). 

The winding number for the orbit x(f) of equation (1) defined by the limit 

w=lim 
t+m I 

a(f)-Q(f0) 
I t ’ 

where (x, 2) = (r sin CX, r cos a), is another quantity. 
The frequency spectrum has been obtained by Fast Fourier Transform calculation. 

2. STRANGE NON-CHAOTIC ATTRACTORS: DEFINITION 

First consider the dynamics of the systems k = f(X, t), where R = [x1, . . . , x,lT represent 
the state variables of the n-dimensional phase space, and f= [f,, . . . ,fnlT gives the 
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coupling between variables. This system is described by n Lyapunov exponents A, (i = 
1,2,. . . n), and if C:=, hi G 0 then the evolution of the system takes place in a limited 
subspace of the phase space. The attractor of the system is a specific subspace which is 
asympotically reached in time (or course, if CF=, hi > 0 the system may never reach any 
attractor). 

The word “strange” refers to the geometrical structure of the attractor, and an attractor 
which is not a finite set of points, a limit cycle (a closed curve), a smooth (piecewise 
smooth) surface (for example a torus), or is bounded by a piecewise smooth closed 
surface volume is called a strange attractor. An attractor is chaotic if at least one Lyapunov 
exponent is positive (typical nearby orbits diverge exponentially in time). From what was 
said above, one finds that a strange non-chaotic attractor is an attractor which is geometri- 
cally strange, but for which typical orbits have non-positive Lyapunov exponents. 

3. MAIN PROPERTIES OF STRANGE NON-CHAOTIC ATTRACTORS 

Some examples of the Poincare surfaces are shown in Figure 1. In Figure l(a) we have 
the example of periodic behaviour for w = 1.848, Figure l(b) represents two-frequency 
quasi-periodic behaviour for w = 1.614. For the periodic and two-frequency quasi-periodic 

__ 
. 

1.51- 
. 

g 
E 0.5 - 
8 

_m 
P 
.‘“- 
0 -0.5 - 

. 

-1.5 - 

. 

-2.5 I I I . 
0.00 1.57 3*14 4.71 6 

Time mod 2r 

-‘::A 
Time mod 2r 

I 
W 

Displacement 

Displacement 

Figure 1. Poincart surfaces of the system (1): (a) periodic attractor w = 1.848; (b) two-frequency quasi- 
periodic attractor w = 1.614; (c) strange non-chaotic attractor w = 1.401; (d) chaotic attractor o = 1.395. 
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Figure l-continued 

behaviour we have a negative Lyapunov exponent and a winding number satisfying the 
relation where 

where 1, M, n are integer (in the case of periodic behaviour w and R are commensurate). 
With further decrease of the w the Lyapunov exponent is still negative but the winding 
number does not satisfy the relation (2), and we have the example of a strange non-chaotic 
attractor (Figure l(c), w = l-401). This type of attractor occurs in a small neighbourhood 
of w = 1.4 (see Figure 4 to follow). In Figure l(d) chaotic behaviour for o = 1.395 is 
shown. In all examples 0 has been 2.464. 

When the winding number does not satisfy the relation (2) and the Lyapunov exponent 
is zero, the three frequency quasi-periodic behaviour can occur, but we have not observed 
it in our example. 

Strange non-chaotic attractors can be quantified on the basis of frequency spectrum. 
In Figure 2(a)-(d) we have plotted the frequency spectra of the orbits which correspond 
to the PoincarC surfaces of Figure 1. The figures show that the spectra of the periodic 
and two-frequency quasi-periodic attractors are concentrated at a small discrete set of 
frequency, while the spectrum of the strange non-chaotic attractor consists of much more 
harmonic components (see the enlarged part of spectrum, Figure 2(e)). 
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Figure 2. Power spectra of attractors shown in Figure 1; (e) enlarged part of power spectrum of Figure 2(c) 
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Figure 3. Spectral characteristic of attractors: (a) strange non-chaotic; (b) two-frequency quasi-periodic. 
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Figure 4. Evolution of attractor with increase of o. Chaotic attractors: (a) w = 1.394, maximum Lyapunov 
exponent A = 0.023; (b) o = 1,395, A = 0.022; (c) w = 1.396, A = 0.017; ‘k) w = 1.404, A = 0.033; (I) r,~ = 1.405, 
A = 0.035. Strange non-chaotic attractors: (d) w = 1.397; (e) w = 1.398; (f) (I =1~399;(h)w=1401;(i)o=1402; 
(j) w = 1.403. Periodic attractor; (g) w = 1.4005. 
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In order to obtain a more quantitative characterization of the spectra of attractors we 
can introduce a special distribution N(a) which was introduced in reference [3] and 
defined as the number of spectral components larger than some values C. These distribu- 
tions are plotted in Figure 3. They show that strange non-chaotic attractors exhibit 
distinctive spectral characteristics other than those of periodic or quasi-periodic attractors. 
Also shown is that for strange non-chaotic attractors one has the relation N(a) ^- (+-OL 
where (Y is constant, while for the two-frequency quasi-periodic attractor one has N(a) = 
In (a-‘). These relations agree with the analytical estimations of reference [3]. 

An example of evolution of a strange attractor is presented in Figure 4. In Figures 
4(a), (b), (c) one has chaotic attractors which evolve as chaotic attractors with slight 
increase of w: see Figures 4(c), (e), (f). Figure 4(g) shows a periodic attractor with a long 
period. With further increase of w one observes strange non-chaotic attractors, Figures 
4(h), (i), (j), and chaotic ones, Figures 4(k), (1) again. 

CONCLUSIONS 

A strange non-chatoic attractor is a fascinating new type of attractor which may occur 
for non-linear oscillators. It seems that this type of attractor is characteristic of quasi- 
periodically forced systems. 



168 LETTERS TO THE EDITOR 

2.5 
q (9 

i. . 
1.5-: . ** 

“. i - 

/ * - 
0.5 - 

; 
t 

*. ill" :: 
. . 

-0.5 - 

??y 

-1.5 - '\ A. 
5 . 

z ‘ua 

E 
,' 

-2.5 I I I 
3 
9 2.5 ._ 
0 . ..M*.- - * k) 

7: I ’ 
1'5 ~,:L.*, '** ;*. , : **..+e 

. . - .,p 
- . . .q.; ’ 

0.5 -. .-.. *, . -.’ . 
: : ’ ;. 

/.y, . . *:* 
. . 

-0.5 ,'t.:, . . 
. 

; 

; 
b 

(i) 
,i ’ 

.- 
, 
: 

I 

/ 

* 
.( 

.( 

.* 

.* 

-2211 
0~00 1.57 3.14 4.71 6.26 0.00 1.57 3.14 4.71 6.28 

Timemod 2~ 
Figure 4-continued 

ACKNOWLEDGMENT 

This work was motivated by the discussion at the Euromech 242 Colloqium on Applica- 
tion of the Chaos Concept to Mechanical Systems. One of us (TX.) is very thankful for 
a valuable discussion with P. Grassberger, H. Isiimaki and F. C. Moon. We are very 
thankful to R. Olejnik for help in the numerical part of our investigation. 

Institute of Applied Mechanics, 
Technical University of Lodz, 
Stefanowskiego l/ 15, 90-924 Lode. Poland 

T. KAPITANIAK 

J. WOJEWODA 

(Received 4 September 1989) 

REFERENCES 

1. W.-H. STEEB, J. A. Louw and T. KAPITANIAK 1986 Journal of the Physical Society of Japan, 
55,3279-3280. Chaotic behaviour of an anharmonic oscillator with two external periodic forces. 

2. T. KAPITANIAK, J. AWREJCEWICZ and W.-H. STEEB 1987 Journal of Physics A 20, 252-255. 
Chaotic behaviour of an anharmonic oscillator with periodic excitation. 

3. F. J. ROMEIREAS and E. OTT 1987 Physical Review A 35, 4404-4413. Strange nonchaotic 
attractors of damped pendulum with quasiperiodic forcing. 



LETTERS TO THE EDITOR 169 

4. T. KAPITANIAK 1988 Journal of Sound and Vibration 121, 259-268, Combined bifurcation and 
transition to chaos in nonlinear oscillator with two external periodic forces. 

5. T. KAPITANIAK and J. WOJEWODA 1988 Journal of Physics A 21, 843-847. Chaos in a limit 
cycle system with almost periodic excitation. 

6. S. WIGGINS 1987 Physics Letters A 124, 138-142., Chaos in the quasiperiodically forced duffing 
oscillator 


