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A new analytical criterion is developed for the strange chaotic attractor in nonlinear oscillators which show a period-doubling 
route to chaos. The method is based on approximate analysis and Feigenbaum universal properties of period doubling. 

It is well known that the Duffing oscillator 

5~+aYc+bx+cx3=Bo +Bt cos 12t ( 1 ) 

shows chaotic behaviour for certain values of  the pa- 
rameters [ 1-5 ]. In many eases it can be shown that 
the chaotic behaviour is obtained via the period- 
doubling bifurcation [1,2,5,6]. Recently some at- 
tempts to create an analytical criterion which allows 
us to estimate the domain in the system parameter 
space has been proposed [6,7]. The criterion by 
Szemplinska-Stupnicka [ 7 ] places the chaotic zone 
between the vertical tangent of the resonance curve 
of the second approximate solution and the bound- 
ary of stability of the period-two solution. In what 
follows the limits of stable and unstable period-dou- 
bling cascades are proposed as boundaries of the 
chaotic domain. 

First consider the first approximate solution in the 
form 

x ( t )  =Co +C,  cost( t2t+O),  (2) 

where Co, C~ and O are constants. Substituting eq. 
(2) into eq. ( 1 ) it is possible to determine these con- 
stants [ 6,8,9 ]. To study the stability of  the solution 
(2) a small variational term ~x(t)  is added to eq. 
(2) as 

x( t )=Co +Cl cos(t2t+ O) + ~x( t) . (3) 
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After some algebraic manipulations, the linearized 
equation with periodic coefficients for ~x(t) is 
obtained, 

85/+a 6x+ 6x (20 +2  ~ cos 0 + 2 2  cos 20)  = 0 ,  
(4) 

where 

2 o = 3 C  2 3 2 +~Cl,  21=6CoC1, 

2 2  3 2 =~C~, O = ~ t + O .  

In the derivation of eq. (4), for simplicity it was as- 
sumed without loss of generality that b=  0. As we 
have a parametric term of frequency ~2-21 cos O, 
the lowest order unstable region is that which occurs 
close to f l /2  ~ x/~o and at its boundary we have the 
solution 

8x=bl/2 c o s ( l ~ t + 0 )  . (5) 

To determine the boundaries of the unstable region 
we insert eq. (5) into eq. (4), and the condition of 
nonzero solution for b~/2 leads us to the following 
criterion to be satisfied at the boundary: 

( 2  0 1( ')2~2_L l r f2 ( ' )2  I 2 - - ~ . .  , - - ~ t *  . .  - - 4 2 1 = 0 .  (6) 

From eq. (6) one obtains the interval (QI 2) , t2~ 2) ), 
within which period-two solutions exist. Further 
analysis shows that at t22 we have a stable period- 
doubling bifurcation for decreasing t2 and at 12~ an 
unstable period-doubling bifurcation for increasing 
g2 [ 6 ]. In this interval we can consider the period- 
two solution of the form 
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x(t)=Ao+A,/zCOS(½12t+tk)+A, cos 12t, (7) 

where Ao, Aw2, A1 and 0 are constants to be deter- 
mined. Again, to study the stability of the period-two 
solution we have consider a small variational term 
6x(t) added to eq. (7). The linearized equation for 
fix(t) has the following form: 

8g+a 8:c+ 5x [/~2).JC2 i/2c COS ½12t 

+~I/2~ sin ½12t+3.3/2 cos(]12t+0) 

+212) cos 12t+2t 2) sin 12t+1~ 2) cos 212t] = 0 ,  

(8)  

where 

,~2) =3(Ao2 + I 2 ~A1/2 +½A21) , 

I I/2c = 3AI/2(mAo + A I  ) COS 0, 

~I/2s=3AI/2(AI - 2 A o )  s in  0 ,  

A3/2=3AIAI/2, ~12c ) =6AoAl +~A2/2c cOs 2o , 

,~12) --~A12/2~ sin 20, ~2) __3~2 
= "~2 -- 2 ~* I • 

The form of eq. (8) enables us to find the range of 
existence of a period-four solution, represented by 

8x=b,/4 cos(!412t+¢)+b3/4 cos(]12t+0).  (9) 

After inserting eq. (9) into eq. (8) the condition of 
nonzero solution for b,/4 and b3/4 gives us the fol- 
lowing set of nonlinear algebraic equations for 12, 
cos 0 and sin ¢ to be satisfied for existence: 

(/~ 1/2, ' + ~  }2) ) - -  ½ (/~ 1/2c - ' ~  ic 2) ) 

X ( - ½a12+21/2, -23/2 sin ¢1) = 0,  

(]~ + ½~z) + ~ 3/z cos ~) 

--½ (~,/2c-l-/~[2) )(/~i2)"l'/~ 1/2c) = 0 , 

( --~a12--]t3/2 sin ~ )  

- ½ (~ ,/~c +~tc 2) ) (,q~) +,~,/zo) = 0 .  (10)  

Solving eq. ( 1 O) by a numerical procedure it is pos- 
sible to obtain 12t 4) and 12~4), the frequencies of sta- 
ble and unstable period-four bifurcations. With both 
stable and unstable period-two and period-four 
boundaries obtained from eq. (6) and eq. (10), as- 
suming that the Feigenbaum model [ lO ] of period 
doubling is valid for our system one obtains the fol- 

lowing boundaries of the domain where chaotic be- 
haviour may occur: 

A121 
12t®) =121z) + 1 - 1/-------6 ' 

~Qz (11) 12~oo) =12t2) 1 -  1/tJ' 

where Af21=1214)-1212),A122=12~2)-12~ 4), and 
#= 4.69... is the universal Feigenbaum constant. As 
Feigenbaum's constant is asymptotic and we extrap- 
olate 12t,~ ) from the period-two stability limits the 
values of 121,~ ) are approximate. The domain where 
chaotic behaviour can occur is proposed to be be- 
tween the limits of unstable and stable period-dou- 
bling cascades, in the interval (/2t °°), 12~) ) and of 
course to expect chaos one must have 

12100) < 12~oo). (12) 

In fig. 1 we show the comparison of this analytical 
estimation of the chaotic domain and the actual (nu- 
merically found) chaotic domain obtained by Ueda 
[ 1 ]. Good agreement is seen. In fig. 2 we compare 
the actual chaotic domain with the domain obtained 
by the above method. Also the domain obtained by 
the approximate criterion of Szemplinska-Stupnicka 
[ 7 ] is indicated. Again our approach shows very good 
agreement with the actual chaotic domain and is bet- 
ter than other analytical estimates. In the domain 
in fig. 2 chaotic ~haviour  has not been found, as here 
12}oo) >12~0o), and no chaotic interval estimated by 
our method exists. 

The analytical technique presented in this paper is 
based on: (a) the approximate period-one, -two and 
-four solutions and their stability limits computed by 
harmonic balance method, (b) Feigenbaum's uni- 
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Fig. I. Stable (solid line) and unstable (broken line) boundaries 
of period-two and -four bifurcations and chaotic domain for eq. 
(I). a=0.77, b=0, c=l, Bo--0.045, BI--0.16, g212)=0.77, 
~ 2 )  = 1.37, QI 4) -----0.89,12t 4) = 1.12,/2l ~) =0.93, ~2~ ~) = 1.05. 
Chaotic behaviour has been found for ~2~ [0.94, 1.04] [ 1 ]. 
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Fig. 2. Chaotic domain of the system ( 1 ), a=0.1, b=0.5, c=0.5, Bo=0, and analytical criteria, (....) criterion of ref. [7]. In the left- 
hand side of the figure the enlargement of the box section is shown. 

versal constant  for the asymptot ic  ra t io  o f  the sta- 
bi l i ty  intervals  o f  the 2 n and  2 n+l per iod ic  solution. 

It can be appl ied  to the class o f  oscillators for which 
the ha rmonic  balance me thod  analysis  shows the 
possibi l i ty  o f  per iod-doubl ing  b i furca t ion  (21 ~ 0 in 
eq. ( 4 ) ) .  Our  me thod  can be appl ied  before  nu- 
merical  analysis  to es t imate  the phase space intervals  
where strange phenomena  can take place. 

In future works I will t ry to use the above  me thod  
to es t imate  chaot ic  doma ins  o f  o ther  nonl inear  
oscillators.  

This  work has been suppor ted  by  the Brit ish 
Council .  I am very thankful  to J. Brindley,  D.G.  
K n a p p  and E. Ponce for valuable  discussions.  
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