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Soliton chaos models for mechanical and biological elastic chains
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The possibility of purely spatial chaos of loop and envelope soliton localization in long elastic strings is considered. Possible
connections to some problems in molecular biology are discussed.

1. Introduction and preliminary remarks

There has been an increased interest in complexity
and spatial chaos in recent years [1-5]. In partic-
ular, since the discovery of loop solitons and their
interaction [6,7] as well as the possibility of a purely
spatial chaos [8], there is a renewed interest in the
Euler elastica and its applications [9].

El Naschie established the connection between the
loop soliton and the Milke-~Holmes chaotic elastica
using a dynamical version of the Euler elastica [5,9].
He also drew attention to the possibility of inter-
preting the instability waves in curved compressed
thin material surfaces (i.c. shells) as envelope soli-
ton turbulence [9,10]. Thompson and Virgin were
the first to publish a numerical confirmation of the
theoretical results of Milke and Holmes using an el-
ementary but neat model [11].

There is some intriguing likeness, at least a purely
visual one, between the elastica configurations and
protein transformations. The primary structure of
protein [12], which is made up of long linear chains
of covalently linked amino acids, for instance, re-
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sembles the periodic instability waves of compressed
elastica. Depending on certain geometrical parame-
ters, a long elastica inside a long circular pipe would
lose stability when compressed and form a helical
structure [13]. The secondary structure also looks
very close to the soliton loops of the chaotic elastica.
Finally, the tertiary structure looks very much like
the strongly coiled elastica anticipated theoretically
inref. [5] and confirmed numerically in refs. [9,13].

Protein chains are not rigid. Similar to the elas-
tica, they are flexible. This elasticity is essential in
understanding protein deformation {12,14]. Not
unlike DNA, soliton chaos of the elastica also con-
veys a definite code when translated into symbolic
dynamics.

In the present work we study numerically what we
may term spatial strange attractors in the elastica.
This might be of interest, since strange attractors are
regarded occasionally as generators of information.

Due to the analogy between the Hamiltonian of
the elastica and the Hamiltonian of a circular elastic
ring under external pressure [15], the similarity may
be extended to circular DNA. In fact in some ele-
mentary demonstration using a long twirled and
stretched elastic band, we observe not only the spa-
tial complexity and pseudo-random loops shown in
refs. [5,9], but we can more frequently and very
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clearly observe supercoiling in the elastic band very
similar to that of DNA. It seems also that spatial
chaos generated by periodic fluctuation in the elas-
tica may fit well into a known analogy between poly-
mer chains and Brownian motion and this in turn is
another connection to fractals.

We may recall as explained in detail in refs. [5,9]
that for a soliton loop to form in the planar elastica,
very large deformation is needed first, then we must
assume that the ends can pass without obstruction
through each other, which is of course physically im-
possible. If the planar two-dimensional constraint is
removed however, the loop soliton forms in three di-
mensions without the need for a large deflection. This
might be related to another observation in protein.
There the primary structures can be considered
planar, however, the secondary structures must be
taken as three-dimensional [14]. Nevertheless, if the
lateral movement of the elastica is restrained in some
way, for instance through electromagnetic forces as
in electric conductors [16] or by elastic forces as in
axisymmetrical deformation of beams attached lat-
erally to the elastic medium [9], then there can be
a possibility for another type of soliton in two di-
mensions and without very large deflection. This is
the envelope soliton well known from the solution of
the nonlinear Schrédinger equation [17]. In the
present work we give numerical confirmation for the
conjecture made in refs. [5,10] that elastic material
surfaces, such as shells, exhibit under certain con-
ditions purely spatial and statical soliton chaos.

In all the problems considered here we study the
influence of band-limited white noise on the ran-
domness of the soliton [18,19], and we show that
this spatial chaos may be eliminated or reduced by
adding noise. Needless to say a phenomenon indis-
tinguishable from spatial chaos can only be observed
in the unforced system by adding band-limited white
noise.

The idea of using soliton to model DNA is of course
not new at all. It has been considered in some pi-
oneering work by Davydov and Kislukla [20]. Highly
interesting results were reported in numerous excel-
lent papers by Scott [21].

These researchers go of course far deeper into the
real and far more difficult problems of molecular bi-
ology. We on the other hand are familiar only with
the global logic of molecular biology and are not in
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a position to comment in depth on the exact nature
of the analogy suggested here.

Nevertheless we hope that our detailed knowledge
of the elastica and statical chaos may be of some
value, however limited, to the specialist who may be
able to draw a clearer picture. In addition we hope
that this work clearly shows that soliton and chaos
are not contradictory and even essential as noted in
a different context by Ueda and Noguchi [22].

2. The dynamical elastica - loop soliton

Consider the following nonlinear differential
equation which describes the dynamical behaviour
of the elastica,

th+Wxx+2£[Wxx(]+W)Zc)_3/2]xx=07 (1)

where ( ),=d/dxand ( ),=d/dt¢. Here W is the
nondimensional displacement, e=a/2PA, « is the
bending stiffness. A is the cross-sectional area of the
elastica, P is the axial force, x is the axial coordinate
and ¢ is the time.

Introducing the stretched coordinates

X =x+t and ¢ =et,

noting that when a loop forms in the elastica, then
compression is reversed into tension [13] and using
¢ and s as coordinate system where ¢ is the slope of
the central line and s is the arch length, our PDE re-
duces to

¢+COS¢(SCC¢¢“)3=O, (2)

where a dot denotes d/d¢ and ( ),=d/ds. Using the
inverse scattering transformation, this equation can
be shown to possess a loop soliton solution [6,7,26~
28]. Some elementary experimental demonstrations
of these loops were reported in ref. [13]. The time
independent version of the last equation is nothing
but the familar nonlinear ODE of the Euler elastica,

s +sing=0. (3)

Now we perturb this equation by first adding peri-
odic spatial forcing (imperfection),

O +Sin p=asin ws , (4)

and then adding band-limited white noise pertur-
bation to it:
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Fig. 1. The most probable value of the distribution of maximum
Lyapunov exponents |4 .| for eq. (5) versus noise intensity 4:
a=0.01, w=1, ¢(0)=2, ¢(0)=0; (----) Vin=0.5, Vmax=3.5;
(R ) Vimin=0.5, Vmax=1.5; (===) ¥min=2.5, Vrmax=3.5.

N
Pss+sing=asinws+A4 Y sin(v;s+y,), (5)
=1

1]

where »; and p; are random variables.

The second component of eq. (5) is an approxi-
mation of a band-limited white noise with a spectral
density

S(”)=a/(ymax_ymin)> Ve[”mina Vmax]’
=0 V¢[”min, Vmax], (6)

0 is constant, ¥, and v,,,, are the band frequencies
of the noise. y; are independent random variables with
uniform distribution on the interval [0, 2rn], 4 and
v, are given by

A= 20'/N, Vi=(i—0.5)AV+Vmin,
AV=(Vma\x_ymin)/lv- (7)

Some of the obtained numerical results for a=0.01,

(b)
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0.00<4<0.01 and three different perturbation fre-
quency bands 0.5<9;<3.5, 0.5<wv,<1l.5 and
2.5<v;<3.5, N=300 are shown in figs. 1 and 2. Two
different representations are used: A spatial plot
which shows the actual form which the infinite elas-
tica should take and also the plot of the most prob-
able value of the maximum Lyapunov exponent dis-
tribution over a number of noise realizations |A x|
(100 realizations of noise for different y; have been
considered) [18,19] versus noise intensity 4. As has
been shown in refs. {18,19] a positive value of |4,
indicates a chaotic stochastic process while a non-
positive one is characteristic for a regular stochastic
process. The results agree qualitatively with some ex-
perimental demonstration reported in refs. [5,9].
To conclude this part we consider the influence of
positive damping as well as what might appear as
somewhat artificial spatial forcing. This forcing arises
however in a natural way in the parametric forcing
of the corresponding damped pendulum problem.
Thus we study the following equation of the elastica,

¢+ 00, +bsin ¢

N
=asinwssing+4 Y, cos(v;s+y:) (8)
i=1
for different parametric values as well as initial
conditions.

For the deterministic and noise perturbed nonlin-
ear dynamics we plot the corresponding spatial
strange attractor in the region of the strange attractor
[23]. Fig. 3 shows clearly the immense richness of
information which these looping patterns can pro-
duce for infinitely long s. This may be relevant to
some problems in molecular biology.

From the plot of the most probable value of the
Lyapunov exponent distribution |A..| shown in fig.
4 we can observe that for some value of noise inten-

Fig. 2. Examples of spatial plot for eq. (5) : (a) 4=0.0015; (b) 4=0.0080.
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Fig. 3. Spatial strange attractors for eq. (8), =0.15, b=1, a=0.94; (a) w=1.56, A=0; (b) @=1.58, 4=0; (¢) w=1.56, 4=0.1; (d)

w=1.58,4=0.15.

0.7 T T T

0.01 |A]| 0.1

Fig. 4. The most probable value of the distribution of maximum
Lyapunov exponents — |4, | for eq. (8) versus noise intensity
A4, a=0.15, §=0.01, w=1, b=0.0272222, ¢(0)=6, ¢(0)=0;
(=---) Vmin=0.5, vnax=3.5; () Ymin=0.5, Vax=1.5; (-—-)
Vinin= 2.5, Venax = 3.5.
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sity A, |Amax| 18 Negative, which implies elimination
of chaos (transition from chaotic to regular sto-
chastic process) in the sense of symbolic dynamics
as shown in the spatial plot of fig. 5b. The shape of

Fig. 5. Examples of spatial plot for eq. (8): (a) 4=0.02; (b)
A=005; (c) 4=0.08; (d) a=0, N=2, »,=1, »,=,/2/10,
A=0.1.
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loops in the spatial plot is not the same because of
random forcing, but if we indicate the upper loop as
1 and the lower one as 0 we obtain a periodic se-
quence of symbols:

000111000111000111000111...,

while for the chaotic spatial plots of figs. 5a and 5c
we have aperiodic sequences:

000111100001001000110001 ...
and
000111011100111010011100....

Another interesting type of behaviour can be ob-
served if we consider a particular form of eq. (5) by
taking =0, N=2 and », and v, to be incommen-
surable. In this case we can observe the behaviour
presented in fig. 5d which seems to be chaotic. it is
chaotic in the sense that it has an aperiodic sequence
in the symbolic representation:

0111001001110001110101110010100...,

but we have no sensitive dependence on the initial
conditions as the Lyapunov exponents are negative.
This type of spatial strange behaviour is related to
the so-called strange nonchaotic attractors [23-25].

3. Instability waves in an elastic structure -
envelope soliton

Consider the following nonlinear partial differ-
ential equation which may be used to describe the
propagation of buckling waves in an elastic medium
such as the axisymmetrical deformation of an axially
compressed cylindrical shell,

aW"I/+o.W" +Cl W—CZ W2+pW=O. (9“'

For a radial strain obeying a logarithmic law, this
equation was used in refs. [9,13] to study the insta-
bility waves due to buckling.

Now depending on the number of slow spaces and
slow time, different reduced differential equations
for the complex amplitude of deflection 4 may be
obtained. For instance, using

X=Xg, X;=8Xy, X;=6&%X,

I=ty, t=ely, lLy=¢€%,
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one finds the following Ginzburg-Landau type equa-
tion [17}:

A" — o A+iosA HiagA+asA|A12=0,  (10)

where i=,/—1, an accent denotes d/dx and a dot
denotes d/dt.

On the other hand the PDE may be drastically re-
duced to an ODE by reducing stretching to only
x;=e¢x. This leads to the following stationary non-
linear Schrédinger equation [17],

A" —o, A+ asA|A2=0 . (11)

This equation is easily integrated by elementary
methods and gives the soliton solution

A=\/%sech(}—§-x,), (12)

for a=c,=c¢,=c3=r=1. The homoclinicity of this
solution may be established easily as shown in ref.
[9].

An optimum choice of the number of slow spaces
and slow times which restores the dynamical char-
acter of the problem we have, however, when we take

X| =&xo, l=&ly, 1,=¢&%.

This leads to the nonlinear Schridinger equation
A" —a,A+iad+asA|4]1*=0, (13)
with the well-known solution [17]
A(X,t)|,—=asech bx coscx, (14)

where a, b and ¢ are constant.

Either way we expect spatial forcing to yield spa-
tial envelope soliton chaos. Thus we consider first
the periodically forced equation

A”+k1A,—k2A+k3A3=k4COSk55. (15)

The results of the numerical integrations for differ-
ent parameter values which are: k, =0.01, k, =
0.25, k3 =19/(4x 18), ks =1 and different values of
k4 are shown in fig. 6. They fully confirm the ex-
pectations expressed earlier in refs. [5,9,13].

Subsequently the forcing by band-limited white
noise,

N
A" +k A —k,A+k;A*=A4 Y cos(v;s+y;), (16)
i=1
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Fig. 6. Examples of spatial plot for eq. (15): k,=0.01, k,=0.25,
k3=19/(4x18),ks=1,4(0)=1.37649, 4(0)=0; (a) k,=0.001;
(b) k4=0.002; (c) k4=0.003.

W\/MM

(a)

N N e N

(b)

NN

{c)

Fig. 7. Examples of spatial plot for eq. (16): k;—k; as in fig. 6:
(a) A=0.001, {Ad | =0.06; (b) A=0.002, |4 .| =0.07; (c)
A=0.003, | Amax| =—0.03.

is considered. In fig. 7 we show a spatial plot of the
same system as in fig. 6 this time, however, with
band-limited white noise forcing.

In all the above examples the soliton strange be-
haviour would thus have a similar symbolic dynamic
representation. However, in many cases we have no
sensitive dependence on initial conditions - fig. 7c.

4. Conclusions

Based on the symbolic dynamics of a single spatial
plot, it is not easy if at all possible to distinguish be-
tween chaos, strange nonchaotic behaviour and ran-
dom behaviour. However, based on the distribution
of the maximum Lyapunov exponents, a distinction
can be made between chaotic and nonchaotic
“strange” behaviour.
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There seems to be some likeness between the de-
formation of the elastica and DNA chains. The de-
formation in an elastic band however is in principle
reversible while the transformation from DNA to
RNA was never observed to be reversible.

In terms of the mechanics of deformable bodies
DNA chains act as if they had in-locked internal
compression inside them, a kind of pre-stressing with
a very weak elastic bond, which is checked by the
bending and axial stiffness of the silhouette of the
chain. When through chemical reactions this stiff-
ness and the bond are eroded, collapse follows. This
is not very much unlike the coiling of a long twirled
and stretched rubber band when the stretching forces
are gradually released. If this outrageously elemen-
tary mechanical picture is anywhere near correct,
then it is of course extremely unlikely that an in-
crease in the stiffness could ever restore the original
situation and if the analogy holds, then there can be
no RNA to DNA transformation.

Of course there is still the possibility known from
materials with memory which may regain the orig-
inal form by an influx of energy.

We hope to have shown clearly through the nu-
merical results that spatial chaos may help in un-
derstanding complexity. The role of random pertur-
bation in eliminating spatial chaos sheds light on the
therapeutic effect of vibration in the medical treat-
ment of bone disorder. Based upon previous dynam-
ical observations [18,19] this effect is fully expected
although it should be regarded as counter-intuitive
that a type of spatial forcing which on its own pro-
duces stochasticity should eliminate another type of
chaos where intuition may suggest that more oom-
plicated behaviour is expected. The work also stresses
the view expressed probably for the first time by Ueda
that soliton and chaos should not be regarded as
contradictory.

Finally we may note that spatial damping may be
thought of as a kind of nonconservative force similar
to that known in dynamical stability as follower forces
[29].
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