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LETTERS TO THE EDITOR 

TRANSITION TO CHAOS IN A GENERALIZED VAN DER POL’S EQUATION 

It is well known that the generalized van der Pol equation with an external periodic force 

d’x 7 dx 
dt’-a(l-x-)-+bx+c.~3=dsinRt 

dt 
1) 

shows chaotic behaviour both in the case c = 0 (for example a = d = 5, b = 1 and 
0=2.466 (see reference [l])) and b=O (for example a=0.2, c=l, d=17 and 0=4 
(see reference [2])). 

What follows is an analysis of the influence of the small cubic term cx3 on the chaotic 
behaviour of equation (1) which can be characterized by the largest one-dimensional 
Lyapunov exponent. We set a = d = 5, b = 1 and 0 = 2.466. This problem has some 
practical significance as in many practical problems one has to deal with restoring force 
of the type bx + cx3. For a weakly non-linear system (c small) usually linearizes this 
relation. 

For numerical studies equation (1) is rewritten as a system of first order differential 
equations with .Y + dx/dr. A modified Runge-Kutta method of the fourth order was used 
for the numerical simulations. The calculation step was rr/( 1000). 
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Figure 1. Chaotic and periodic attractors on the parameter c line; *, chaotic; 0, periodic; UC, unsymmetrical 
chaotic; SC, symmetrical chaotic; up, unsymmetrical periodic; sp, symmetrical periodic; I-V, zones where 
transitions from chaotic to periodic behaviour (or oice versa) take place. 

The behaviour of system (1) in its dependence on c is shown in Figure 1. The chaotic 
behaviour is marked with a star (*) and the periodic behaviour is marked with a dot 
(*). First we examined the c interval [0,0*02] in steps of 0.001. Then in searching for 
routes to chaos we used smaller steps. It is interesting that in this small interval there are 
two types of periodic attractors, and two types of chaotic attractors. Examples of periodic 
unsymmetrical attractors are shown in Figures 2(a), 2(b) and 3(a), 3(b) and marked by 
up in Figure 1. The periodic symmetrical attractors are shown in Figures 4(a), 4(b) and 
they are marked by sp in Figure 1. An example of a chaotic unsymmetrical attractor 
(marked by UC in Figure 1) is shown in Figure 2(c), and examples of chaotic symmetrical 
attractors (SC in Figure 1) are shown in Figures 3(c) and 4(c). When c =0 one has a 
chaotic symmetrical attractor. 
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Figure 2. Transition to chaos in region I. Phase portraits: (a) c = 0.002; (b) c = 0.001; (e) c = 0.0005. 

Two different routes to chaos are found. The first one starts with a periodic unsym- 
metrical attractor of the type shown in Figures 2(a) and 3(a) with a small and a large 
loop. With decreasing c a period-doubling bifurcation takes place. These bifurcations are 
visible on the phase portrait by the creation of new large loops (Figures 2(b) and 3(b)). 
Finally this route can lead to chaotic symmetrical or unsymmetrical attractors (Figures 
2(c), 3(c) and 4(c)). This type of route to chaos takes place in regions I and II. 

For an unsymmetrical chaotic attractor (c = 0*0005, Figure 2(c)) the attractor evolves 
to a symmetrical one after a small decrease in c. 

For the route shown in Figures 3(a)-3(c) a chaotic unsymmetrical attractor between 
periodic unsymmetrical and chaotic symmetrical attractors is not found. 

The second route starts from a symmetrical periodic attractor shown in Figure 4(a) 
and it takes place in the region III in Figure 1. With decreasing c one observes first that 
the structure of the small loop is changing (Figure 4(b)) and then the system suddenly 
undergoes a transition to the chaotic attractor shown in Figure 4(c). 

Similar sudden jumps from chaotic symmetrical attractors to periodic unsymmetrical 
attractors take place in regions IV and V shown in Figure 1. 

As mentioned above, system (1) shows chaotic behaviour for a = d = 5,b = 1, R = 2.466 
and c = 0. When we take into account the non-linearity cx3 one would expect that this 
non-linearity would strengthen the chaotic behaviour. However, we find that with a small 
cubic term (for example, c = 0.013) the chaotic behaviour disappears. Even for smaller 
values of c there exist windows with periodic attractors. 

To summarize we find that the chaotic behaviour of system (1) is very sensitive to the 
small additional cubic non-linearity cx3. When chaotic behaviour is expected in any 
experiment, our results show that we cannot apply linearization of cx3 since it can change 
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Figure 3. Transition to chaos in region II. Phase portraits: (a) c = 0.011; (b) c = 0.0109; (c) c =0.01(X3. 

Figure 4. Transition fo chaos in region 111. Phase portraits: (a) c = 0.02; (b) c = 0.0128; (c) c = 0.012. 
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the solution qualitatively. This is due to the fact that the “damping term” is non-linear. 
Consequently, both non-linear terms must be taken into account. 
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