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Abstract-The work focuses attention on strange but nonchaotic behaviour of dynamic systems as a 
relatively new phenomenon distinct from the usual strange chaotic one. Several characterization 
techniques associated with Poincare sections, Lyapunov exponents, capacity and information dimen- 
sions are used. It is shown that based on a single time series it is virtually impossible to distinguish 
between strange chaotic and strange nonchaotic behaviour even using Lyapunov exponents tech- 
niques. However a combination of the capacity dimension, Kaplan-Yorke conjecture and a recent 
model for strange nonchaotic behaviour due to El Naschie seems to give some hope and direction for 
resolving this problem. 

1. INTRODUCTION 

In the last decade or so, much attention was given mainly to a class ,of dissipative 
dynamical systems that exhibit strange chaotic behaviour [l-3]. This behaviour and the 
associated attracting sets were found in numerical experiments [3, 41 as well as in actual 
experimental systems [5, 61. 

Recently, due to the dedicated efforts of Ott, Grebogi, Yorke and their associates at 
Maryland a new class of strange attracting sets were found which look topologically strange 
but are nonchaotic [7-91. In other words these strange nonchaotic attractors have fractal 
structure but typical nearby orbits do not diverge exponentially with time. 

Since both attractors look visually very similar as can be seen from the Poincare maps of 
Figs. l(a,b) and 2(a,b), the numerical values of things like fractal dimensions, information 
dimensions and Lyapunov exponents are the only way which can allow us to make any 
distinctions. 

In this work, we present some numerical experiments showing that it is virtually 
impossible to distinguish between strange chaotic and strange nonchaotic deterministic 
behaviour based on the estimation of Lyapunov exponents from one time series. Second, 
we outline a possible method for making a distinction based on Kaplan-Yorke conjecture. 
Finally we discuss a model proposed by El Naschie as a prototype for strange nonchaotic 
behaviour [ 181. 

We will be mainly 
equation 

concerned here with a quasi-periodically forced Van-der-Pol’s 

and a quasi-periodically 

f - a(1 - X2)A + x = dcosotcosQt 

forced pendulum 

X + al + bsinx = d + c(cosOt + cos&t) 

(I) 

(2) 
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Fig. 1. The Poincark maps of the quasi-periodically forced Van der Pol’s equation (1): u = 5.0, d = 5.0, 
R = V?! + 1.05; (a) strange chaotic attractor w = 0.002, the largest nonzero Lyapunov exponent is A = 0.1183, (b) 

strange nonchaotic attractor o = 0.006, A = -0.1213. 

where a,b,c,d,w and S2 are constants. Furthermore w and 52 are incommensurate. Both 
equations (1) and (2) span each a four-dimensional phase space given by 

(Xi = x, x2 = 1, x3 = 01 = Wt, xq = O2 = Qt) E lR* x S’ x $1. 

The study of these systems can now be reduced to the associated three-dimensional 
Poincare maps obtained by defining a three-dimensional cross-section to the four-dimen- 
sional phase space by fixing the phase of one of the angular variables and following the 
remaining three variables as they evolve in time starting on the surface until they return to 
intersect the cross-section again. If the phase x4 = O2 is fixed then our map would be 
defined as the set 

Ml,) ={(x,(t,), x2(4& ~dt,)i,,, = 24Q + to, n = 1, 2 . . .> 
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Fig. 2. The Poincart maps of the quasi- 
w= 0.5 - ( fi - 1)/4, Q = 0.5 + ( 4 

eriodically forced pendulum equation (2), b = 1.0, c = 1.1, d = 1.33, 
5 - 1)/4: (a) strange chaotic attractor a = 0.5, (b) strange nonchaotic 

attractor a = 3.0. 

where to is the initial time. The surface of the map is thus described by plotting xi(t,) 
against x2 = i(t,,). Alternatively we could have plotted xi(f,J against x3(?,,) 
against x3( t,). 

2. LYAPUNOV EXPONENTS AND DIMENSIONS OF ATTRACTOR 

For systems for which the equations of motion are explicitly known and the 
equations exist there is a straightforward technique for computing a complete 
spectrum [lo, 111. 

or X&J 

linearized 
Lyapunov 

For most experimental systems, however, the equations of motion are usually unknown 
[12] or are in a form for which linearized equations do not exist [6, 131. In such cases, 
Lyapunov exponents are estimated based on the monitored long-term time series. First the 
attractor is reconstructed by a well-known technique with delay coordinates [14]. The 
reconstructed attractor though defined by a single trajectory can provide points that may be 
considered to lie on different trajectories. It has been shown that in many cases this 
attractor possesses a Lyapunov spectrum identical to the original attractor [14]. 

The technique of estimating the Lyapunov exponents based on the reconstructed 
attractor gives good results when we have at least one positive Lyapunov exponent in the 
spectrum. 

For equations (1) and (2) the linearized equations exist and we can compute the 
Lyapunov exponents directly using the formula 

J. = limd(t)/d(O) (3) I’= 

where d = (y’ + p2)‘p, while y is a solution of the linearized equation. In our case we 
have four Lyapunov exponents. Two of them are trivial in the sense that they are 
identically zero by virtue of the two forcing frequencies. Let the Lyapunov exponents &_4 
be ordered by size 

then, we can differentiate between three possibilities for equations (1) and (2): 

(a) If ill = A2 = 0 2 h3 2 A4 then we have a two-frequency quasi-periodic or a strange 
nonchaotic attractor. 
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(b) If Al = A, = A3 = 0 > A4 then we have a three-frequency quasi-periodic attractor. 
(c) Finally if Al > 0 then we have a strange chaotic attractor. 

The method of distinguishing two- and three-frequency quasi-periodic attractors has been 
given in [7]. 

Having calculated the Lyapunov exponents one can now introduce the Lyapunov 
dimension 

2 !=ZAi 
d,=j+IAj,li=j+k 

where j is the largest index of the Lyapunov exponents for which the sum ~izzjli is 
nonnegative, Kaplan and Yorke [l, 111 suggested the equality of Lyapunov dimension dL 
and information dimension d,. This conjecture which was rejected initially has since been 
shown to be correct for countless examples and has found fruitful application on many 
occasions although we must stress that it does not work smoothly for certain systems. 
Roughly speaking the conjecture is correct only as long as the invariant set has the 
structure of a Cartesian product of an Euclidian manifold and a single Cantor set. We may 
note here that the Kaplan-Yorke formula has only one fractional part which corresponds 
to a single Cantor set because we have always k < 1. 

Now we turn our attention to the information dimension of an attractor [l, 2, 111. This 
dimension which unlike the capacity dimension is not a metric dimension is defined as [16] 

dI = lii I(E)/ln(l/c) 

where we are supposing that the attractor is covered by cubes formed from a Cartesian grid 
of spacing E in the phase space and Z(E) is given by 

N(E) 

I(&) = - C Pi In (Pi) 
i=l 

Here Pi is the measure of the attractor in the ith cube of the cover and N(E) is the number 
of cubes. In an actual calculation pi can be estimated as the fractions of time that an orbit 
spends in the ith cube. 

Now before we go any further we have to make it aboundantly clear that we are 
associating the word dimension with three different things which have to be kept clearly 
apart in order to avoid confusion. There is first the dimension of the phase space of the 
dynamical system which is equal to the number of the equivalent first order ordinary 
differential equations. In our case of a two-frequency forced oscillator this is clearly 4. 
Second we may be talking about the dimension of the whole attracting set embedded in the 
four-dimensional phase space. Finally we will be talking about the dimension of an 
attractor on the surface of cross-section which is the dimension of the Poincare map and is 
thus always smaller or at best equal to the dimension of the whole attractor. 

Coming back to our problem, in the presence of the two frequencies quasi-periodic 
forcing our attracting set must be naturally at least two dimensional. If the attractor is to 
be chaotic then we must have at least one unstable direction, i.e. one positive Lyapunov 
exponent. By virtue of Kaplan-Yorke conjecture this implies that any chaotic attractor in 
our four-dimensional system will have an information dimension of at least three. In fact 
according to Kaplan-Yorke conjecture an attractor with d, = 2 must be nonchaotic. On the 
other hand an attractor with dI = 2 is obviously neither a point nor a limit cycle. 
Consequently if it is not quasi-periodic then it must be indeed a new phenomenon, a 
‘strange’ strange nonchaotic attractor. 

One should not be misled into thinking that an integer as a dimension precludes the 
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existence of a fractal structure. Actually a fractal curve with integer as a dimension was for 
El Naschie [18], the starting point of his peano-like dynamics idea which will be discussed 
later on. Putting it in another way one could say that Kaplan-Yorke conjecture has 
anticipated the possible existence of strange nonchaotic attractors before its actual 
numerical discovery which has also been verified experimentally quite recently [17]. 

Applying the preceding conclusions to a Poincare map of our system, all what we need is 
to reduce all dimensions by one. Consequently for a strange chaotic behaviour the 
dimension of the attractor on the surface of the cross section should be at least dI = 2 
while for a strange nonchaotic attractor it should be dI z 1. We have written here 
approximately because in general all our results are obtained from numerical calculations, 
using box counting methods performed not on the real three dimensional cross-section but 
on its two dimensional projection. This, in addition to the inherent inaccuracy of the box 
counting and similar methods, makes it very difficult to find for instance the theoretical 
value d, = 1 for a strange nonchaotic attractor. 

Having said that, the situation for the capacity dimension is considerably better. As well 
known this dimension is defined as [19] 

d, = liiln iV(.s)/ln(l/&). 

It is a metric dimension which is usually marginally but strictly larger than d,. However for 
strange nonchaotic attractors, it was shown by Ding ef al. [15] to be substantially larger. In 
fact El Naschie concluded on the basis of his prototype modification of Smale’s horseshoe 
that a strange nonchaotic attractor in a two-frequency quasi-periodic system is character- 
ized by d, + 2 and d, + 1 on the Poincare map [18]. 

3. NUMERICAL EXPERIMENTS WITH STRANGE CHAOTIC AND STRANGE NONCHAOTIC 

ATTRACTORS 

Having discussed the main theoretical background of chaotic and nonchaotic strange sets 
we can now discuss some of the numerical results obtained for equations (1) and (2). Thus 
we have computed the Lyapunov exponents twice, once from equation (3) and another 
time from time series based on Wolf et al. ‘s algorythm [lo]. The results are compared in 
Table 1. From this table we see clearly that the Lyapunov exponent calculated from the 
explicitly known differentiable equations enables us to distinguish between strange chaotic 
and strange nonchaotic attractors. This distinction is however not possible based on the 
Lyapunov exponents estimated from a single time series. This is so because using this 
method we obtain positive Lyapunov exponents for chaotic and nonchaotic strange 
behaviour alike. 

The difference between chaotic and nonchaotic attractors can be made quite visible when 
we plot the Poincare map for two nearby trajectories and connect successive points of both 
trajectories as shown in Fig. 3. In the case of strange nonchaotic behaviour it is clearly 
visible that both trajectories remain close together as in Fig. 3(a) while in the chaotic case 
sensitive dependence on initial conditions is visibly documented in Fig. 3(b). 

We have made capacity and information dimension calculations [16] on the projection 
x - 1 of the Poincare map. Every time a maximum of 2000 X 2000 equally sized grid boxes 
were used to cover the attractor. The results are presented in Table 2. All dimensions were 
estimated from the slope of the logarithmic plot. For the capacity dimension this is 
In N(E) - In (l/e) and for the information dimension this is Z(E) - In (l/c). An example of 
such a plot is shown in Fig. 4. 

In case of the strange nonchaotic attractor of Fig. l(b), least square fit gave dl z 1.45 
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Table 1. Comparison between the values of the Lyapunov exponents computed from formula (3) and that 
estimated from time series 

Equation a 

Largest Lyapunov 
exponent 

b c d 0 & Formula Time Type of 

(3) series attractor 

5.0 0.006 

5.0 0.007 

5.0 0.003 

5.0 0.002 

G + 1.05 -0.1213 0.0845 strange 
nonchaotic 

fl + 1.05 -0.2834 0.0684 strange 
nonchaotic 

ti + 1.05 0.1426 0.1468 strange chaotic 

ti + 1.05 0.1183 0.1232 strange chaotic 

(2) 3.0 1.0 1.1 1.33 0.5 - 0.5 + -0.0717 0.0104 (ti - strange 
x 
= 

1)/4 (ti - 1)/4 
nonchaotic 

J 3 0.5 1.0 1.1 0.80 0.5 - 0.5 + 0.0234 0.0282 chaotic 

.5! 

($,,, 

1)/4 (fl 

strange 

- 1)/4 

0.027 0.2 0 1.0 -0.0181 0.2030 strange 
nonchaotic 

0.027 0.2 0 till0 1.0 0.3801 0.3942 strange chaotic 

while in the case of the strange chaotic attractor of Fig. l(a) we estimated d, G 2. The 
results of Table 2 show that the capacity dimension of the projection of the Poincare map is 
near the prediction based on El Naschie’s Peano dynamics namely d, s 2. 

By contrast the estimation for the information dimension is disappointing. The combina- 
tion of having a projected Poincare map and the use of a box counting method clearly has 
a strong negative effect on the accuracy of the calculation of the information dimension 
which may not be surprising since this is not a metric dimension. 

4. PEANO-LIKE DYNAMICS AS A MODEL FOR STRANGE NONCHAOTIC BEHAVIOUR 

Recently, El Naschie has made several suggestions regarding the use of space filling 
curves [19] as a carrier of fractal dynamics and proposed a prototype map for strange 
nonchaotic behaviour [18]. Although El Naschie’s ideas seem to us to lack mathematical 
precision, they are quite bold and original and warrant further careful examination. In fact 
if they could be shown to be beyond any doubt correct then they may turn out to be 
extremely useful in understanding the nature of fully developed turbulence and strange 
nonchaotic behaviour. 

We must also state from the outset that whether or not his method of deduction is 
correct, his conclusions do reinforce our own previous conclusions and this in turn may 
show that his method of deduction may be correct after all. 

We would like to start by summarizing the main points of his theses as we understand it. 

(a) Noting that an additional torsional movement could mimic the action of quasi-periodic 
forcing and the spiraling motion on a torus he introduced a ‘S’ form horseshoe-like map 
which he showed subsequently to lead to Peano-like space filling dynamics [18]. 
(b) Based on the ergodicity of the globally disjointed but locally space filling peano map 
(see Fig. 5) he concludes that the capacity dimension is d, = 2 and the information 
dimension is d, = 1. 
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b) 

Fig. 3. The Poincare maps of the two nearby trajectories (double Poincar6 maps) for equation (1); (a) strange 
chaotic attractor of Fig. l(a); (b) strange nonchaotic attractor of Fig. l(b). 

Table 2. Estimation of the capacity and information dimension of x - x projection of the Poincark map for 
equation (1) 

a d ” 

5.0 5.0 0.006 
5.0 5.0 0.007 
5.0 5.0 0.003 
5.0 5.0 0.002 

R Capacity Information Type of attractor 
dimension dimension 

fi + 1.05 1.76 1.45 strange nonchaotic 

2 : :::: 
1.82 1.52 strange nonchaotic 
1.83 1.82 strange chaotic 

fl + 1.05 1.96 1.93 strange chaotic 

(c) He attributes the stabilization effect of quasi-periodic forcing to the shortening in the 
length of a horseshoe strip due to the torsional deformation. 
(d) One of the conclusions which must draw attention is his claim that in four-dimensional 
phase space a strange set will typically have a Cantor-like fractal dimension d, z 4. He 
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Fig. 4. Examples for the logarithmic plot used for determining dimension 

In We) 

box counting. 

reaches this result using an unusual argument based on a scaling of dimensions. The 
rationale behind this unorthodox idea seems to be the following question. What is the 
Cantor set in two dimensions which corresponds to the one-dimensional middle third 
geometrical construction of a Cantor set. Such a set should be Cantorian with the same 
dimension regardless of the direction of the cross-section taken through the set. Putting it 
that way it is clear that such a set is not a Cartesian product of two perfect Cantor sets for 
which d, = ln4/ln 3. It is not even the Cantor target for which d, = 1 + ln2/ln3. Based on 
the ratio between two unit areas corresponding to an Euclidian two-dimensional surface 
A, = (1)’ and that of an imaginary Cantor surface A, = (ln2/ln 3)* he found that this 
two-dimensional Cantor-like set is the Sierpinski gasket d, = ln3/ln2. From there he 
proceeds to show that four-dimensional Euclidian manifolds are typically saturated by 
fractal dynamics corresponding to four-dimensional strange sets. After that the dimension 
of the strange set progressively exceeds the dimension of the hosting manifold by a 
substantial margin. He then takes what we feel to be quite a leap by arguing that four 
dimensions are therefore the critical line after which very strange phenomena may appear 
and that this is related to Newhouse and Ruelle-Takens turbulence scenario and Roessler’s 
wrinkled attractors [20]. In the same spirit he proceeds to show that in five dimensions the 
fractal Cantor like set attractors have d, = 6.31 and argues that five variables are what are 
needed to study fully developed turbulence. What interests us here however is the 
conclusion that if d, = 4 is typical in four-dimensional phase space then for a two-frequency 
quasi-periodically forced oscillator we will have d, G 2 on the surface of cross-section 
whether the strange set is chaotic or not. Consequently it is impossible to make a definite 
distinction between chaotic and nonchaotic attractors based on d, alone. It is only when 
d, G 2 but also d, G 1 that we can infer the existence of a strange nonchaotic set [21]. This 
clearly agrees with our own previous conclusions. 

CONCLUSIONS 

The results reported here and in particular Table 2 shows that no distinction between 
strange chaotic and strange nonchaotic attractors can be made for quasi-periodically forced 
systems based on Lyapunov exponents estimated from a single time series only. This 
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Fig. 5. Geometrical construction of a globally discrete and locally area filling peano curve which is oriented on a 
horseshoe-like discrete map. (Courtesy Prof. A. Hussein.) 
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procedure is viable only for strange chaotic attractors as can be seen from Table 2. The 
situation is of course different when the equations of the motion are differentiable. If the 
equations are known but are not differentiable then we can use the procedure outlined in 
Fig. 3 (a,b), where two solutions for nearby initial conditions are used. However, the 
experimentalist has usually only a single series of observations as is the case with 
atronomical data. In such cases we must study the data of one set of parameters for the 
usually unknown set of initial conditions. Information about sensitive dependence on initial 
conditions is then of no value. 

The estimation of the information and the capacity dimension of an attractor on the 
Poincare cross-section or its projections can provide good evidence for the existence of a 
strange nonchaotic attractor. 

For the quasi-periodically forced system with strange nonchaotic attractor, considered 
here, the estimations for the map are d, z 2 and d, E 1 or at least d, << 2. If we consider 
the dimension of the whole attractor then Kaplan-Yorke conjecture gives d, = 2 while d, 
must be larger than 3. According to El Naschie it is d, z 4. 
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