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A note on randomness and strange behaviour
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Typical similarities and differences between strange chaotic and nonchaotic attractors in deterministic systems and random
behaviour are discussed. It is shown that based on a single time series it is impossible to distinguish between these types of

behaviour even using the technique of Lyapunov exponents.
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of dissipative dynamical systems that typically e
hibit strange behaviour [1-3]. Such behaviour has
been found in numerical experiments [3,4] as well
as in experimental systems [5,6]
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Recently two classes of strange attractors have been
distinguished:

(a) A strange chaotic attractor — one which is geo-
metrically “strange”, i.e. the attractor is neither a fi-
nite set of points nor is it piecewise differentiable and
one for which typical orbits have positive Lyapunov
exponents.

(b) A strange nonchaotic attractor — one which is
also geometrically “strange” but for which typical
nearby orbits do not diverge exponentially with time
[7-16].

Strange nonchaotic attractors have been found to
be typical for quasiperiodically forced systems
[7,13]. Recently they have been also observed in ex-
perimental systems [16]. Although one may doubt
that these are periodic or quasiperiodic orbits with
sufficiently long period, even in this case the period
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is why their name is justified.

o hath tunag Af ctranas attrantare lnnl vary
As both 1YPCS O1 Srange atiraCiors 100K VO

ilar (compare for example the Poincaré maps of figs.
)

1a and lh\ the value of the Lvanunov ex

and the value of the Lyapunov exponen

seems to be the only quantity which allows u:
tinguish these classes.

If we also consider a system forced by random noise
we shall find that its behaviour is very similar to
strange but deterministic behaviour. As an example
consider the Poincaré maps of the system forced by
random noise, fig. 2a, and by periodic force, fig. 2b.

In this paper we present some numerical experi-
ments showing that it is impossible to distinguish be-
tween strange chaotic and nonchaotic deterministic
behaviour and strange behaviour caused by random
forcing.

For systems of which the equations of motion are
explicitly known and the linearized equations exist
there is a straightforward technique [7,8] for com-
puting a complete Lyapunov spectrum.

For most of the experimental systems the equa-
tions of motion are not known [19] or are in the form
for which the linearized equaiions do noi exist

6,20]. In this case Lyapunov exponents are esti-
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Fig. 1. Poincaré maps of the quasiperiodically forced van der Pol
equation (1): a=35.0,d=5.0, Q=\/§+ 1.05; (a) strange chaotic
attractor @w=0.002, the largest nonzero Lyapunov exponent
A=0.1183, (b) strange nonchaotic attractor w=0.006,
A=—0.1213.

First the attractor is reconstructed by the well-known
technique with delay coordinates [21]. Our recon-
structed attractor though defined by a single trajec-
tory can provide points that may be considered to lie
on different trajectories. It has been shown that in
many cases this attractor has got a Lyapunov spec-
trum identical to that of the original attractor [17,22-
25].

The technique of estimation of Lyapunov expo-
nents based on the reconstructed attractor gives good
results when we have at least one positive Lyapunov
exponent in the spectrum [17].

In what follows we consider three systems:

(a) The quasiperiodically forced van der Pol
equation,
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Fig. 2. Poincaré maps of the Duffing equations (3) and (4):
a=0.01, b=0.25, ¢=19/4x18; (a) random forcing by white
noise with intensity D=0.001, (b) periodic forcing d=0.001,
w=1.0.

x—a(l—x?)x+x=d coswt cos Lt , (1)
(b) the quasiperiodically forced pendulum,

6+ aO+bsin @=d+c(cos wt+cos ) , (2)
(c) the Duffing equation forced by periodic force,

¥+ax—bx+cxd=dcoswt, (3)

or random white noise 7(z) with intensity D,

X+ax—bx+exd=n(t) . (4)

For eqs. (1)-(3) linearized equations exist and
we can compute Lyapunov exponents directly from
the formula
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where d=./y*+y?, while y is a solution of a linear-
ized equation.

In these cases we have computed Lyapunov ex-
ponents twice from the formula (5) and from time
series based on the algorithm of Wolf et al. [17]. In
numerical simulations the fourth-order Runge-Kutta
method with time step 7/200, where T=2xn/w has
been used. Strange nonchaotic attractors have been
observed up to 7=10%. The comparison of these re-
sults is shown in table 1.

From table 1 one finds that the calculation of the
Lyapunov exponents from the expiicitly known dif-
ferentiable equation allows one to distinguish be-
tween strange chaotic and nonchaotic attractors. This
distinction cannot be followed based on the Lya-
punov eXponents estimated from a Slﬁgle time seri u:a,
as by this method we obtained positive values of

(3)
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chaotic attractors but for strange nonchaotic attrac-
tors as well,

This result may look quite surprising but it is jus-

tified when we follow the method of estimation of

Lyapunov exponents from the attractor recon-
structed from a single time series. If a time series is
irregular (not periodic, quasiperiodic) it is not dis-
tinctive from a chaotic one and the reconstructed at-

tractor has got a complicated géometry. To estimate

Table 1

The compariso
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Lyapunov exponents from this attractor we have to
obtain positive values for both strange chaotic and
nonchaotic attractors, as the whole procedure ex-
plores the aperiodicity of time series and not the ex-
plicit dependence on initial conditions. As other
methods of estimating Lyapunov exponents from
time series [22-25] are also based on this method
of attractor reconstruction it seems that using them
similar results are very likely.

The difference between strange chaotic and non-
chaotic attractors is visible when we plot a Poincaré
map for two nearby trajectories and connect succes-
sive points of both trajectories (see fig. 3). In the
case of strange nonchaotic behaviour it is visible that
both trajectories stand ciose together, fig. 3a, whiie
in the chaotic case a sensitive dependence on initial
conditions is visible, fig. 3b.

There are some distinguishing properties between
stochastic and chaotic systems. For example, the sto-
chastic systems will not have a self-similar structure
in the phase space, since stretching and folding of the
manifolds do not occur. Indeed manifolds, as com-

manlv defined do not Avicf in the naiecy case Alen
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the transition to strange behaviour with changing the
control parameter in the stochastically and period-

ically driven system are distinctly dlfferent With pe-
riodic forcing the peaks in the power spectra accu-
mulate in the period doubling cascade, as the control
parameter is changing [26].

However, in many cases it is not possible to change

Eq. a b c d w Q D Largest Lyapunov exponent Type of attractor
formula (5) time series
(1 5.0 - - 5.0 0.006 V24105 - —0.1213 0.0845 strange nonchaotic
- - 5.0 0.007 ﬁ .05 - —0.2834 0.0684 strange nonchaotic
5.0 - - 5.0 0.003 \//E .05 - 0.1426 0.1468 strange chaotic
. - - 5.0 0.002 2+1.05 - 0.1183 0.1232 strange chaotic
(2) 3.0 1.0 1.1 133 05-4(/5 05+i(/5 - ~0.0717 0.0104 strange nonchaotic
-1) 1)
0.5 1.0 1.1 080  0.5-4(/5 05+i(/5 - 0.0234 0.0282 strange chaotic
-1) -1)
0.005 0.027 0.2 0 %,\/5 1.0 - —0.0181 0.2030 strange nonchaotic
0.010 0.027 0.2 0 L /3 1.0 - 0.3801 0.3942 strange chaotic
(3) 001 025 19/4x18 0.001 - - 0.0864 0.0914 strange chaotic
(4) 0.01 0.25 19/4x18 - _ - 0.001 - 0.0921 stochastically
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Fig. 3. Poincaré maps of two nearby trajectories of eq. (1); (a)
strange chaotic attractor of fig. 1a, (b) strange nonchaotic attrac-
tor of fig. 1b.

parameters in order to study the transition to strange
behaviour. The experimentalist may have only a se-
quence of observations (a single time series). The
typical examples are astronomical data. In this sit-
uation we will have to study only the data of one set
of parameter values for one (usually unknown) set
of initial conditions. Hence all information on var-
ious routes to chaos and sensitive dependence on ini-
tial conditions is of no value. In figs. 2a and 2b we
show the Poincaré maps for chaotic and stochasti-
cally forced response of eqs. (3) and (4), while in
figs. 4a and 4b we show the same maps for two nearby
trajectories. In both cases one notices the sensitive
dependence on initial conditions.

Generally, the stochastic system will possess a re-
sponse that is less smooth than a deterministic one,
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Fig. 4. Poincaré maps of two nearby trajectories of eqs. (3) and
(4); (a) random forcing (as in fig. 2a), (b) periodic forcing (as
in fig. 2b).

which should be C* differentiable. Based on this
property Sigeti and Horsthemke [27] found that the
high frequency power spectrum is expected to dis-
tinguish between a deterministic and a stochastic
system. They show that if a response is C* differ-
entiable (stochastic case) it will have a drop-off f —2"
in its power spectrum. This distinction cannot be ap-
plied to systems like those of figs. 2 and 4 where the
noise is small enough and the response is still smooth
enough to develop the above mentioned difference,
as has been shown by Stone [28].

The analysis of the power spectra would distin-
guish between quasiperiodic orbits and strange non-
chaotic attractors as has been shown in refs.
[7,13,15], but distinction between strange non-
chaotic and chaotic attractors is not straightforward.
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The possibility of having a system possessing sen-
sitivity to initial conditions caused by stochastic ex-
citation as well as the possibility of having a system
showing strange behaviour without sensitive depen-
dence on initial conditions should not be over-
looked. It seems that more care will have to be given
in applying the procedure of estimation of Lyapunov
exponents from time series or the result [27] to ex-
perimental data. The general conclusion that they
imply can be misleading, as there are systems for
which distinction between strange chaotic, strange
nonchaotic and stochastic behaviour is impossible
based on a single time series.

This work was partially supported by KACST,
Riyadh, Saudi Arabia. We would like to acknowl-
edge the help we received from H.E. Professor S. Al
Athel.
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