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Typical similarities and differences between strange chaotic and nonchaotic attractors in deterministic systems and random 
behaviour are discussed. It is shown that based on a single time series it is impossible to distinguish between these types of 
behaviour even using the technique of Lyapunov exponents. 

In the last decade attention has been given to a class 
of dissipative dynamical systems that typically ex- 
hibit strange behaviour [ l-31. Such behaviour has 
been found in numerical experiments [ 3,4] as well 
as in experimental systems [ 5,6]. 

Recently two classes of strange attractors have been 
distinguished: 

(a) A strange chaotic attractor - one which is geo- 
metrically “strange”, i.e. the attractor is neither a fi- 
nite set of points nor is it piecewise differentiable and 
one for which typical orbits have positive Lyapunov 
exponents. 

(b) A strange nonchaotic attractor - one which is 
also geometrically “strange” but for which typical 
nearby orbits do not diverge exponentially with time 
[7-161. 

Strange nonchaotic attractors have been found to 
be typical for quasiperiodically forced systems 
[ 7,13 1. Recently they have been also observed in ex- 
perimental systems [ 16 1. Although one may doubt 
that these are periodic or quasiperiodic orbits with 
sufficiently long period, even in this case the period 
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is longer than any reasonable observation and that 
is why their name is justified. 

As both types of strange attractors look very sim- 
ilar (compare for example the Poincart maps of figs. 
la and 1 b), the value of the Lyapunov exponents 
seems to be the only quantity which allows us to dis- 
tinguish these classes. 

If we also consider a system forced by random noise 
we shall find that its behaviour is very similar to 
strange but deterministic behaviour. As an example 
consider the Poincare maps of the system forced by 
random noise, fig. 2a, and by periodic force, fig. 2b. 

In this paper we present some numerical experi- 
ments showing that it is impossible to distinguish be- 
tween strange chaotic and nonchaotic deterministic 
behaviour and strange behaviour caused by random 
forcing. 

For systems of which the equations of motion are 
explicitly known and the linearized equations exist 
there is a straightforward technique [ 7,8] for com- 
puting a complete Lyapunov spectrum. 

For most of the experimental systems the equa- 
tions of motion are not known [ 19 ] or are in the form 
for which the linearized equations do not exist 
[6,20]. In this case Lyapunov exponents are esti- 
mated based on the monitored long-term time series. 
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Fig. 1. Poincare maps of the quasiperiodically forced van der Pol 

equation (1): a=5.0, d=5.0, Q=$+ 1.05; (a) strange chaotic 

attractor 0=0.002, the largest nonzero Lyapunov exponent 

I=O.1183, (b) strange nonchaotic attractor w=O.O06, 

I=-0.1213. 

First the attractor is reconstructed by the well-known 
technique with delay coordinates [21]. Our recon- 
structed attractor though defined by a single trajec- 
tory can provide points that may be considered to lie 
on different trajectories. It has been shown that in 
many cases this attractor has got a Lyapunov spec- 
trum identical to that of the original attractor [ 17,22- 
251. 

The technique of estimation of Lyapunov expo- 
nents based on the reconstructed attractor gives good 
results when we have at least one positive Lyapunov 
exponent in the spectrum [ 17 1. 

In what follows we consider three systems: 
(a) The quasiperiodically forced van der Pol 

equation, 
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Fig. 2. Poincare maps of the Dufftng equations (3) and (4): 

a=O.Ol, b=0.25, c=19/4~18; (a) random forcing by white 

noise with intensity D=O.OOl, (b) periodic forcing d=O.OOl, 

o= 1.0. 

$-a( 1 -x~)~+x=dcosot cos Ot ) (1) 

(b ) the quasiperiodically forced pendulum, 

8+a&+bsin@=d+c(cosot+cosQt), (2) 

(c) the Duffing equation forced by periodic force, 

R+aa!-bx+cx3=dcoswt, (3) 

or random white noise r](t) with intensity D, 

.f+&-bx+cx3=r/(t). (4) 

For eqs. ( 1 )-( 3) linearized equations exist and 
we can compute Lyapunov exponents directly from 
the formula 
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A= limd(t), 
*-cc U(U) 

where d=,/m, while y is a solution of a linear- 
ized equation. 

In these cases we have computed Lyapunov ex- 
ponents twice from the formula (5 ) and from time 
series based on the algorithm of Wolf et al. [ 171. In 
numerical simulations the fourth-order Runge-Kutta 
method with time step T/200, where T=Zlc/w has 
been used. Strange nonchaotic attractors have been 
observed up to T= 10’. The comparison of these re- 
sults is shown in table 1. 

Lyapunov exponents from this attractor we have to 
obtain positive values for both strange chaotic and 
nonchaotic attractors, as the whole procedure ex- 
plores the aperiodicity of time series and not the ex- 
plicit dependence on initial conditions. As other 
methods of estimating Lyapunov exponents from 
time series [22-251 are also based on this method 
of attractor reconstruction it seems that using them 
similar results are very likely. 

From table 1 one finds that the calculation of the 
Lyapunov exponents from the explicitly known dif- 
ferentiable equation allows one to distinguish be- 
tween strange chaotic and nonchaotic attractors. This 
distinction cannot be followed based on the Lya- 
punov exponents estimated from a single time series, 
as by this method we obtained positive values of 
Lyapunov exponents not only in the case of strange 
chaotic attractors but for strange nonchaotic attrac- 
tors as well. 

The difference between strange chaotic and non- 
chaotic attractors is visible when we plot a Poincare 
map for two nearby trajectories and connect succes- 
sive points of both trajectories (see fig. 3). In the 
case of strange nonchaotic behaviour it is visible that 
both trajectories stand close together, fig. 3a, while 
in the chaotic case a sensitive dependence on initial 
conditions is visible, fig. 3b. 

This result may look quite surprising but it is jus- 
tified when we follow the method of estimation of 
Lyapunov exponents from the attractor recon- 
structed from a single time series. If a time series is 
irregular (not periodic, quasiperiodic) it is not dis- 
tinctive from a chaotic one and the reconstructed at- 
tractor has got a complicated geometry. To estimate 

There are some distinguishing properties between 
stochastic and chaotic systems. For example, the sto- 
chastic systems will not have a self-similar structure 
in the phase space, since stretching and folding of the 
manifolds do not occur. Indeed manifolds, as com- 
monly defined, do not exist in the noisy case. Also, 
the transition to strange behaviour with changing the 
control parameter in the stochastically and period- 
ically driven system are distinctly different. With pe- 
riodic forcing the peaks in the power spectra accu- 
mulate in the period doubling cascade, as the control 
parameter is changing [ 261. 

However, in many cases it is not possible to change 

Table 1 
The comparison of the values of Lyapunov exponents computed from formula (5 ) and estimated from time series. 

Eq. a b C d w 51 D Largest Lyapunov exponent Type of attractor 

formula ( 5 ) time series 

(I) 5.0 - - 5.0 
5.0 - - 5.0 
5.0 - - 5.0 

5.0 
(2) ::: 1.0 1.1 1.33 

0.5 1.0 1.1 0.80 

0.005 0.027 0.2 0 
0.010 0.027 0.2 0 

(3) 0.01 0.25 19/4x 18 0.001 
(4) 0.01 0.25 19/4x18 - 

0.006 
0.007 
0.003 
0.002 
0.5-i(fi 

-1) 
0.5--t@ 

-1) 
M 

-1) 
o.s+t(fi 

-1) 
1.0 
1.0 

-0.1213 0.0845 strange nonchaotic 
-0.2834 0.0684 strange nonchaotic 

0.1426 0.1468 strange chaotic 
0.1183 0.1232 strange chaotic 

-0.0717 0.0104 strange nonchaotic 

0.0234 0.0282 strange chaotic 

-0.0181 0.2030 
0.3801 0.3942 
0.0864 0.0914 

0.001 - 0.092 1 

strange nonchaotic 
strange chaotic 
strange chaotic 
stochastically 

forced system 
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Fig. 3. Poincarémapsof two nearbytrajectoriesof eq. (1); (a) Fig. 4. Poincarémapsof two nearbytrajectoriesof eqs.(3) and
strangechaoticattractoroffig. Ia, (b) strangenonchaoticattrac- (4); (a) randomforcinj (asin fig. 2a), (b) periodicforcing (as
tor of fig. lb. in fig. 2b).

parametersin orderto studythetransitionto strange which shouldbe C~differentiable.Basedon this
behaviour.The experimentalistmayhaveonly a Se- propertySigeti andHorsthemke[27] foundthat the
quenceof observations(a singletime series).The high frequencypowerspectrumis expectedto dis-
typical examplesare astronomicaldata. In this sit- tinguish betweena deterministic and a stochastic
uationwe will haveto studyonly thedataof oneset system. They show that if a responseis C” differ-
of parametervaluesfor one (usually unknown) set entiable(stochasticcase)it will haveadrop-offf— 2n

of initial conditions.Henceall information on var- in its powerspectrum.Thisdistinctioncannotbeap-
iousroutestochaosandsensitivedependenceon mi- plied to systemslike thoseof figs. 2 and 4 wherethe

tial conditionsis of no value. In figs. 2a and2b we noiseis smallenoughandtheresponseisstill smooth
show the Poincarémaps for chaoticand stochasti- enoughto developthe abovementioneddifference,
cally forced responseof eqs.(3) and (4), while in as hasbeenshownby Stone [28].
figs. 4aand4b weshowthesamemapsfor two nearby The analysisof the powerspectrawould distin-
trajectories.In bothcasesonenoticesthe sensitive guishbetweenquasiperiodicorbitsandstrangenon-

dependenceon initial conditions. chaotic attractors as has been shown in refs.
Generally,the stochasticsystemwill possessa re- [7,13,15], but distinction between strange non-

sponsethat is lesssmooththana deterministicone, chaoticandchaoticattractorsis notstraightforward.
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