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Abstract-Evidence has accumulated in recent years of the occurrence, in certain nonlinear systems. 
of strange nonchaotic attractors. that is attractors whose geometrical character is not simple, but on 
and near to which the exponential divergence of trajectories. characteristic of chaotic behaviour. does 
not occur. This behaviour has implications for predictability; small errors in initial conditions grow 
much more slowly than in a chaotic system. 

Such attractors occur commonly in quasiperiodically forced nonlinear oscillators. where their range 
of existence in parameter space is substantial; we describe two particular cases, one restricted to 
mechanics. the other to chemistry. Long nonchaotic transients occur in other system. 

Xloht cvidcnce for strange nonchaotic attractors arises from numerical expcrimcnts. and certain 
spectral features have been proposed [F. Romciras and E. Ott, Plrys. Rev. h3S. 4414 (1YS7)] as 

distinguishing chsractcristics. Some analytical methods are also indicated which give plausible and, as 
compnrcd with numerical results. quite accurate bounds in parameter space for their existence. 

1. INTRODUCTION AND BACKGROUND 

The existence of strange attractors in dynamical systems has been recognised at lcast since 
the cclcbratcd paper of Lorcnz [l], and was suspected well before that, though the term 
itself appears to have been used first only in 1971 by Ruelle and Takens as a broad 
description [2]. The essential characteristic of a strange attractor is best defined in 
negatives, as for example in Romeiras and Ott [3]. Thus a strange attractor is one which is 
not: a finite set of points; a limit cycle (closed curve); a smooth (piece wise smooth) 
surface; and bounded by a piece wise smooth closed surface [3-61. 

This description relates to the geometrical character of the attractor, an object in phase 
space towards which trajectories are drawn as time approaches infinity. It says nothing 
more about the trajectories themselves, either singularly or as a class. In particular, it says 
nothing about the rate of divergence of two trajectories ‘initially close together’. Neverthe- 
less, for some time, the concepts of strangeness in geometrical character and of exponential 
divergence of trajectories, implying great sensitivity to initial conditions or chaos, and 
hence poor predictability, were widely regarded as almost synonymous. 

Recently several instances have been described of nonchaotic strange attractors [3-lo], 
and, in some classes of forced nonlinear systems, they appear to be of normal occurrence, 
that is, they persist over substantial ranges of parameter values. Such attractors are 
undoubtedly strange, but the behaviour of neighbouring trajectories is no longer exponen- 
tially divergent for large time even though each trajectory may have an arbitrarily complex 
form. Thus the outlook for predicrabifity of the state evolving from a given initial condition 
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is much improved; small errors in describing the initial stage arising, for example, from 
inaccurate observations. or from over-crude approximation, need not lead to dramaticall!, 
false results in a finite time. 

This difference in qualitative behaviour motivates the identification of nonchaotic strange 
attractors (NSAs), and it is convenient first of all to rehearse briefly the methods by which 
the existence of strange attractors, chaotic or nonchaotic, may be deduced. In practice. 
basic information usually comes in the form of time series representing the evolution of 
some set of observables. 11. as functions of time. Conceptually we may think of a phase 
flOH 

'1,(X,,) = If(f. Xl,) 

constituting the solution of a continuous system, for esample the autonomous ordinary 
differential equation 

k = f(s). where s E W” 

or alternatively a set of iterates, I,, of a discrete system. for example a one-dimensional 

map 

T: .r -+ f(x). 

Real data, relating even to a continuous system will of course often consist of a set of 

values of a smooth function, II. obtained at a sequence of specific times. T. T + r. 
T + 3r.. . . T f tit, . 

u,,(T) --+ H,(T + r) + --+ ll,,(T + UT) -+ . .; 

even if this is not the case it may prove useful to generate discrete data from continuous 
tlows by suitable Poincnrc’ sections. 

In casts ivhcrc the information consists of a single time scrics, a basic step is to calculate 
II frcqucncy spectrum; in practice this is nccomplishcd by use of an FFT algorithm and 

appropriate smoothing techniques. 
Knowlcdgc of the spectrum. togcthcr with judicious use of PoincarG map information, 

gives much insight into the nature of an attractor. In particular, Romcirns and Ott [3] have 
suggcstcd that NSAs yield spectra having a chnractcristic signature; if the number of 

spectral components larger than some value, B is given by i\‘(o). then h'(tr) - CT-“. This 
contrasts with values h’(a) - log (I/n), A'(n) - [log (l/o)]’ for two-frequency or three-fre- 
quency quasi-periodic attractors respcctivcly. 

Marc direct evidence of divcrgcncc or non-divergence of ncighbouring trajectories is 

obtained from the Lyapunov exponent. Positive Lyapunot, exponents correspond to 
divcrgcncc: they give a measure of the rate of growth of small perturbations to a given 
trajectory, and therefore some measure of predictability. It is generally assumed that the 
existence of one or more positive Lyapunov exponents is a necessary and sufficient 
condition for the existence of chaos. Negative Lyapunov exponents imply decay of 
perturbations and hence, in general. convergence of trajectories onto attractors of lower 
dimension than the total phase space. 

Methods of calculating the Lynapunov exponents, either from kno\vn differential 
equations or from experimental data, are well described in the literature (see. e.g. Wolf 
and Swift [ 111. Wolf er nl. [ 121). and their relative cheapness and straightfonvardness mean 
that they have been the most popular indicators of chaos. It has recently been pointed out, 
hoivevcr, by one of us (Kapitaniak and El Naschie [I;]. Knpitanink [I-!]) that the 
Lyapunov exponents derived from time series data may give misleading results in the cxc 

of NSAs and that a more scnsitivc approach may bc ncccssary. In the case studied the 
authors demonstrated that the information dimension tl, proi,idcd a much more sensitive 

test. Here 
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*V(e) 

dI =I’? 1(E)/ln (l/~) with I(E) = - 2 p[ln(p,) 
1=1 

where p, is the measure of the attractor in the ith ‘cube’ of a covering of the attractor by a 
Cartesian grid of spacing E, and TV is the total number of cubes. Effectively p, is 
obtained by estimating the fraction of time the trajectory spends in the ith cube. 

Much evidence has now been assembled [3-lo] indicating the ‘normal’ occurrence of 
NSAs is quasi-periodically forced systems. In Section 2 we present two examples of results, 
for a quasi-periodically forced Van der Pol equation, and for a similarly forced system 
describing an autocatalytic chemical reactions. 

Forcing at (at least) two irrationally related frequencies is common in engineering 
systems: indeed forcing at a single frequency is likely to be the exception rather than the 
norm. A fortiori, in naturally occurring dynamical systems, physical or biological. a 
multi-peaked spectrum of forcing is to be expected. We have examined in Section 2 the 
sensitivity of a nonchaotic strange attractor, arising from quasi-periodic forcing, to the 
presence of a perturbatory third-frequency forcing. Its robustness suggests that the 
qualitative behaviour obtained for two frequency forcing will hold for multi-frequency 
forcing, and will therefore be observed commonly in real systems. In particular we expect 
to see NSAs in higher order coupled systems of nonlinear oscillators with irrationally 
related intrinsic frequencies. 

Theoretical understanding of the phenomenon of NSAs is incomplete, though Romeiras 
and Ott [3] have argued plausibly that a condition for their existence is the existence of a 
globally attracting three-torus in the essentially four-dimensional phase space of equation: 

d’x/dt’ + vdx/dr + sinx = k’ + V[costo,t -t cos +I]. (1.1) 

All trajcctorics approach this torus, and we may expect a dynamics on the torus described 

by 

dcl)/dt = S(cf), I) 

Lvhcre the t dcpendencc of S is cluasipcriodic. 
The strange nonchaotic NSAs reside on this torus (their strangeness has been established 

in the cast of the quasi-periodically forced pendulum), and chaos results from a fracturing 
of the torus at an appropriate parameter value. A stroboscopic section of these trajectories 
on the three-torus at times T, 2T, 3T,. . . nT, . . . yields a two-torus, on which the 
dynamics may be dcscribcd by an invertible map 

(1) = G(+, r), t = (t + 2rrw/S2) mod(2n). 

This map has been shown in Ref. [3] to give rise typically to NSAs. 
A resemblance is apparent between this scenario and the similar occurrence of two-tori 

in the three-dimensional phase space of equation (1.1) for (oz = 0 (simple forcing). 
Quasi-periodic bchaviour on such two-tori might be expected to be broadly analogous of 
non-chaotic strange behaviour on the three-tori above. This expectation is born out by the 
numerical results of Section 2; the examples exhibit a remarkably close correspondence 
between the regions of parameter space occupied respectively by quasi-periodic and 
non-chaotic strange behaviour in the two cases. 

2. QUASI-PERIODICALLY FORCED SYSTEhlS 

We have alluded in Section 1 to the ubiquity of NSAs in quasi-periodically forced 
systems. In this section we describe two specific examples, a nonlinear oscillator of Van der 
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Pol type. and a simple autocatalytic chemical reaction model [IS]. Some earlier results on 

the first system have been described elsewhere [8. lo]: the second system has not, as far as 

we know, been investigated. 

2.1. Qrltrsi-prriorlicol! forced Van der Pol oscillutor 

We consider the equation 

= (F/2)[cos(cr~ - Q)t + COS(~O + R)r]. 

(2.1) 

This equation. dcscribinp an oscillator with nonlinear damping. has a stable limit cycle for 

/j > 0. implying the esistence of robust finite amplitude free oscillations. It has been used 

in innumerable models of mechanical. electrical and chemical and biological systems. 

Forcing, when included. has usually been assumed to be at a single frequency. Incvitnbly. 

real systems endure forcing at two or more frequencies, and equation (2. I) is a simple 

cxnmplc of this. 

Detailed numerical evidence of the existence of an NSA in this system has been given 

elsewhcrc [S. 101. and its range of esistcnce in (F. 52) space for given values of J.. /;. ~rj,,, (I) 

is sholvn in Fig. I. The corresponding largest Lynapunov csponcnt is shown in Fig. 2. \vith 

regions of NSAs indicated; in these regions RIO positive cxponcnt esists, but the behnviour 

I 33 x 106 , 

1400 1600 
f?Qi: 
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is not quasi-periodic. Not only is this deducible from the numerics: we have established 

analytically [9, lo] that no response of the form 

is possible. 

x = Acos(wt + E~)cos(~-~~ + E:) (24 

Note that the region of existence of NSA is extensive in the parameter space (Fig. 3). so 
that we should expect to observe such behaviour in a real system modelled by equation 

(2.1). 
As a test of the robustness of the behaviour to further complexities in the forcing, we 

have tested the response of the system when a third irrationally related frequency is added 
to the forcing function. The results are shown in Fig. 4, and relate to the equations 

.i: - 2;1(1 - .+ + x = acosntcostur + bcosrnr (2.3) 

and 

respectively. 

.i: - 2L(1 - x?).t + x = acoscu,tcosRtcosor (2.4) 

In each case regions of existence of a nonchaotic strange attractor survive, and indeed, 
with three frequencies, even when the third frequency arises at the level of the small 
perturbation. we find that it is impossible to have anything other than chaos or NSA. In 
the case where b < N the power spectrum is typically like Fig. 5, suggesting a ‘noisy’ torus, 
on which neighbouring trajectories do not diverge exponentially. WC conjecture that such a 
noisy quasi-periodic bchaviour will be the typical response of a real system to quasi- 
periodic forcing. 

EXISTENCE OF TWO FRCO,,ENCy 

~ASIPERIOOIC SOLUTION 

jjzjggj! 

$1 CHAOS 

:I 
I 

I h 

2.9 3.0 32 34 x 103 

Fig. 3. Domains of strange chaotic and strange nonchaotic attractors of equation (1.1): F = 1.1 X IO”. R = 15(H). 

Fig. 4. The Inrgcs: nonzcw Lyapunov cxpcrimcnt A,.,, for equations (2.3) and (2.4): A = 2.5. 0 = 4. 52 = 2.64: (a) 
two frcqucncy forcing: (7~ = 0. h = 0: (b) equation (2.3): 6 = d/3/10. b = 0.1; (c) equation (2.4) 0 = ti3jlO. 
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0.01 - 
0 1 2 3 

FREQUENCY 

Fig. 5. Power specrrum of the response of equation (2.2): A = 2.5. a = 5. R = 2.6-I. w- \/Z/IO. rr/ = V? IO. 
h = I). I. 

2.2. ~lrnsi~~criotlictrl!\, Jorced drerrlicnl spstcrn 

Our second esample. bvhich, because of its relative unfamiliarity we describe more fully. 

is a chcmicnl system. WC consider a model for cubic autocatalysis, developed by Gray and 

Scott [lS], for a simple reaction in a closed vessel which converts the reactant P to the 

product C via the intermediates A, B. according to the scheme 

P-A rate = k,,p 

A + 2B - 313 rate = k,clh’ (2.5) 

B-C rate = k7/). 

In the type of chemical system envisngcd the concentration uf the initial reactant 1’ i5 

many orders of magnitude grater than the masimurn concentrations attain4 by the 

intermccliatcs A. B. with (to bc consistent) the rate of convt‘rsiun from P to A being 

rclativcly slwv in comparison with the other reaction rata k,. X-,. Conscqucntly wc can. to 

;I good approximation, regard the concentration P as being constant and equ;ll to its initial 

value /I,,. i.e. LVL‘ art‘ making the ‘poolctl chemical’ approximation. 

The diffcrcntial equations governing the reaction scheme then become 

drr/dr’ = k,,/‘,, - k,ntG 

dh/d/’ = ,&r/1) - kzh 
(2.6) 

where c~h are the concentrations of AB respectively and I ’ is time. Equations (2.S) are 

made non-dimensional by Lvriting 

0 = .r(k,/k,)“. h = y(k,jk,)” and f’ = kzf 

so that equations (2.6) become 

(2.7) 

whcrc 

!’ = (k,,p,,/k,)( k ,/k,)’ z 

is n constant of order unity. 

Equations (2.6) \vcrt’ originally proposed b>, Sel’kov [I61 as a simple model for 

oscillations in glycolysis. and their solution has been consideral for all /l > 0 in some detail 

in Ref. (IS]. Strictly, equation (2.5) implies that p decays very slwvly requiring !l to be 
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proportional to exp (-at) (CY > 1). This scheme has been studied by Merkin et al. [IS] 
where a full discussion of the application of such a scheme to chemical reactions is given. 
Our basic assumption is to set cr to be zero. 

If we assume ,D to be oscillating quasi-periodically about ,LJ,) with frequencies W. R, in an 
attempt to model the effects on the reaction due to fluctuating external conditions. we 
consider the system 

d.r/d t 

dy/dt 

= 

= 

&j(l + Ecosnt cos or) - _r_$ 

xy’ - y. 
(2.8) 

A typical set of results is shown in Fig. 6, which should be compared with Fig. 7 
obtained by Merkin et al. [19] in a study of the simple sinusoidally forced reaction (i.e. 
forcing function proportional to cos~t). Again note the close, but not exact, correspond- 
ence between regions of quasi-periodicity in the simply forced oscillator and regions of 
existence of an NSA in the quasi-periodically forced case. 

Cl2 

ESCPPE TO ININITY 

STRANGE NONCHAOTIC 

OUASIPERIODIC 

012 
ESCAPE TO INFINITY 

ouw_slPmloolc 

II 

Fig. 7. Domains of chaotic (cross-hatched) and qunsipcriodic behaviour of equation (2.8): 14, = 0.95, w = 0. 
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3. TRANSIENT STRANGE NON-CHAOTIC BEHA\‘IOUR IN PERIODICALLY FORCED 
SYSTEMS 

We have seen that NSAs are common in quasi-periodically forced systems. In this section 
we show that transient strange nonchaotic behaviour can occur also in periodically forced 
systems. 

Consider the parametrically excited Duffing equation 

.i- + a.? - (1 + b cos Rr)s + cx3 = 0 (3.1) 

where n, 6. c and S2 are constant (Ariaratnan et al. [19]). Examples of this equation are 
found in many applications of mechanics, particularly in problems of dynamic stability of 
elastic systems. 

Equation (3.1) has three Lyapunov exponents: one of them is always 0, one is aluays 
negative, and the third can change sign with the change of system parameters. This one can 
be called the largest non-zero Lyapunov exponent, i.. It is plotted in Fig. 3.1 as 6 changes 
from 0 to 0.5. When h is small. /! is negative and the system (3.1) does not show sensitive 
dependence on the initial conditions. When b is about 0.34. 2 changes suddenly from 
negative to positive values and the behaviour of the system becomes chaotic. 

The winding number fulfils the relation 

)t’ = lim [a( I) - 0(0)1/f = (I/n)R (3.7) 
,-r 

where: (_v, _c) = (rcosn. r sin a): I, II arc intcgcr only, or 0 i 0.256. In the intorvnl 
0.256 < h < 0.3JS we have aperiodic motion without sensitive dcpcndance on the initial 
conditions. which wc call transient strange non-chaotic bchaviour. Since in 3-dimensional 
phax space the combination of Lynapunov esponents (O.-.-) guarantees ultirnatc 
approach to a limit cycle, so the observed bchaviour has to bc transient. This transient 
behaviour differs frorn chaotic transient bchaviour in that the nearby orbits do not divcrgc 
csponcntially. Time evolution towards a limit cycle seems to bc following 

chaotic + strange non-chaotic --L limit cycle. 
transient transient 

A > 0 1. < 0 
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The Poincare maps for the parameter value close to the boundary between transient 
strange nonchaotic behaviour and chaotic attractors are shown in Fig. 9(a,b). 

The system (3.1) has three equilibrium positions, at x = kl, 0 and i = 0. Depending on 
the initial conditions it can exhibit oscillations around one of the two stable equilibria 
x = 21. i = 0, a small ‘orbit’. or around all three equilibria, a large ‘orbit’ (see Fig. 10). 

In Fig. 11 we show the plot of maximum deflection X from equilibria x = _Cl, i = 0 in 
the case of motion on the small orbit. and from equilibrium x = 0, f = 0 in the case of 
motion on the large orbit. 

For the initial conditions leading to the oscillations on the small orbit it is found that this 
type of oscillation exists up to 6 = 0.308, when we have a sudden transition to the motion 

(b) X 

Fig. 9. PoincarC maps: (a) transient. I = lO-‘T, h = 0.34; (b) 6 = 0.35. 
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Collusion type II 

t 
Transllmn IO 
chaos 

arouncl three equilibria with a long apcrioclic transient. This ~uclclcn transition is conncctccl 

with the collision of the small orbit with ;1 non-stable orbit around .v = 0. .\‘- = 0. Ii’C cdl1 

this cvcnt ;t type I collision. Nest. at h = 0.33X, LVC obs2rvc ;I transition to chaotic 

bchaviour. 

For the initial conditions for which the large orbit is possible. wc’ find that this orl,it ih 

stable only for 0.2-G > (7 > 0.256. For h > 0.2-H. only the oscillations on the small orbit arc 

st:lhlc. At 11 = 0.256 WC observe the collision of the large orbit Lvith the unstahlt‘ orhit 

around .Y = 0. .i = 0. ;I type II collision. and for larger 17 ac ohscrxc lransicnt 5tr;ingc 

non-chaotic bchaviour. As in the first cabc. for !? S 0.3JS. mc uhscrvc transition to chaotic 

bchaviuur. 

b’c can ;iIso fis the value of h to corrcsponcl to motion on ;I strange non-chaotic 

attractor. and change the vnlucs of a. The plot of dutlcction ,Y versus f/ i5 sho\vn in Fig. 

12. As (1 incrcascs from 0.1 to O.lSl Lvc ohscrve pcridic rnotiun un the small or-hit. At 

C( = 0. LSL ;I collision of type I occurs and tramient strange norlchaotic txha\ iour t’n\ul’. 
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0.6 

Fig. 12. Maximum deflection X vs damping coefficient u for equation (3. I). 

this esisting up to n = 0.212, when another type I collision takes place, and we have a 
return to periodic oscillations on the small orbit. 

4. II)ENTIFIC/\TION AND I’KEI)ICTION OF NONCHAOTIC STRANGE ATTHACTOHS 

The results WC have presented in earlier sections have all been obtained, as have those of 
other workers, by direct numerical computation of indicators. Markedly different spectral 
characteristics scparatc NSA behaviour from quasi-periodic bchaviour, and calculation of 
Lyapunov cxponcnts provides further evidence, reliable when the basis of calculation is a 
known mathematical system, but to bc used with care when the only source of information 
is actual data. In this latter case, which is of course likely to be the usual one in situations 
of real physical concern, secure evidence is obtainable only by use of much more 
computationally demanding dimension calculations. 

The practical indications for predictability associated with the existence of NSAs makes 
some form of analytical prediction highly desirable; we have found that two approaches 
yield promising results (8, lo]. 

Firstly we can find limits on parameter values for the existence of a purely quasi-periodic 
response to quasi-periodic forcing. The method uses a theorem first proved by Urabe [20], 
and an example of the resulting predicted boundary in parameter space is given in Fig. 13. 

Briefly the theorem quarantees the existence of a quasi-periodic solution (2.2) of the 
equation (2.1) if the inequality 

C s (1/52;)@){(0$ - A?)/(2 + 2A)}‘+ (4.1) 

is satisfied, where the constant, C is given by 

C = max{(F/2)/1(0; - (Q - o)?/ + (F/2)/jW?, - (a + W)zj, 

(F/2)(R - W)/J(c)(?l - (Q - + + (F/2)(Q + cu)/\W; - (Q + tu)‘l. 

This result may bc extended to establish conditions for the existence of higher harmonic 
quasi-periodic responses as follows. If the condition (4.1) does not hold, i.e. if there is no 
simple quasi-periodic solution of the form (2.2), we can expect more complicated 
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Fig, 13. Boundnry of existence of the solution (2.2) (broken line) and houdar~~~ of Hopf hifurcatwn (wlid line) 
for equation (2.1). (system parameter\ ;I+ in Fig. 1). 

quasi-periodic solutions of the form 

.~(f) = i3(0. 0) + C C {C,,cos(p, v)f + Jj,sin(p. 19f} (4.2) 
r-l Ip,=r 

where ([I, 1,) = I’,“, + /‘zl’:, 11’1 = ll’ll + lP2I. “I = !2 - to, vz = S2 + (0, the unknown coeff- 

icients L?(C), (1). C,,[l,, can be dctermincd by any approsimatc method (for eXampie 

Galcrkin). 

_v( [) = U(0. 0) + c c {C,, cos(/~. v)t + fi,,sin([j, v)f} 
r=, I,“=’ 

WC have the residual function 

R(f) = ? - 26(1 - /3.C’).? + to;bT - F(cosv,f + cos\~lf). 

Expanding R(f) in finite cloublc Fourier scrics one obtains 

R(f) = b(0, 0) + 1 x {c,,cm((p, v)f + rl,,sin(p. v)L} 
,?, I,‘!” 

Jr,, 

r = lh(O, O)l + 1 1 {lc,l + !ti,,/) 
,=* I,‘!” 

If we now introduce 

and 

then WC hnvc the incqualitics 
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T 2 sup Ii(t)1 

T’ a sup Ix’(r)\. 

If the solution z lies in a &neighbourhood of i(t) = [i(t), B(t)]’ we have 

Il’P(:. A) - A@)[\ s 2A{7-(2T’ + 7’) + 2(r’ + 2T)6 + 36’) (4.3) 

Taking into account (4.3) we have the following results: if there exists a non-negative 
number K< 1, and a positive number 6 satisfying both inequalities 

2A{T(27-’ + T) + 2(7-’ + 2776 + 3S9) < (/I/2)((1 - A9’%/2(2 + 2A)‘r- 

2r(2 + 2@‘,‘/A(l - K)(l - P)‘R < d 

then by the theorem of Urabe, the quasi-periodic solution (4.2) exists. 
A second analytical condition, which apparently gives an approximation to the boundary 

between nonchaotic and chaotic behaviour, is obtained by seeking Hopf bifurcations in a 
simpler system of ordinary differential equations obtained from (2.1) by a suitable 
averaging procedure. The details have been fully described elsewhere, and typical results 
are included in Figs 3 and 13. 

Aside from these two partly analytical results, detection of NSAs has been achieved 
through direct numerical analysis of data: calculation of spectra or calculation of some 
derived quantity, for example either Lyapunov exponent or some form of information 
dimension is required. 

Romeiras and Ott [3] have proposed a method based on direct analysis of spectra. 
Introducing N(a), defined as the number of spectral components larger than some value u, 
they conjecture that N(a) - o-” for NSAs in contrast to N(a) - In (l/b) for two 
frcqucncics quasi-periodic attractors and N(a) - In’( l/a) for three frcqucncics quasi- 
periodic attractors. Evidcncc for such distinctive spectral behnviour in the forced damped 
pendulum equation was adduced by them. 

An altcrnativc approach, based on Lyapunov exponents. has been proposed by Ditto et 
crl. [21] and Kapitaniak [l-t]. Estimation of Lyapunov exponents is rcliablc when the 
equations driving the system arc known but is not reliable when used on data obtained 
from a long time scrics of observations in a case where the eqlrnfiorrs arc unknown. In this 
second case, in order to distinguish between chaotic and non-chaotic attractors, the 
properties of information dimension d, are used. The presence of two-frequency quasi- 
periodic forcing guarantees that every attractor will be at least two-dimensional. According 
to Kaplan-Yorke conjecture [22] the information dimension of strange nonchaotic attrac- 
tors is d, = 2. In practice the dimension estimation is performed on the surface of cross 
section of the attractor, reducing all dimensions by one, i.e. a strange nonchaotic attractor 
occurs if the information dimension of an attractor on the cross section is tl, = 1 and a 
chaotic attractor occurs if d , 2 2. More details of this method are given in Ref. [14]. 

5. DISCUSSION AND SIJM~IAKY 

Our objectives in this paper have been threefold. Firstly to draw further attention to the 
occurrence of a type of behaviour in nonlinear dynamical systems which is complex, but in 
which neighbouring trajectories do not diverge exponentially, as they do when the 
behaviour is chaotic. We have attributed this behaviour to the existence to a nonchaotic 
strange attractor (NSA). Secondly we have stressed the robustness of such a behaviour, 
particularly in systems which arc quasi-periodically forced, and thirdly we have described 
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methods for the detection of NSAs and for the establishment of bounds in parameter space 
for their existence. 

The distinction between an NSA and a strange attractor is likely to be important when 
detailed calculation of trajectories is required. Though trajectories may appear equalI) 
complex in the two cases. small errors in an initial condition will remain small for far 
longer if we have an NSA. and we should expect much better predictability. Though 
transient non-chaotic strange behaviour is possible in periodically forced systems, it seems 
that permanent NSAs occur widely for systems which are forced quasi-periodically and that 
they persist when the forcing has still more independent frequencies. Indeed. the 
parameter space for a system forced at multiple frequencies may well be divided into 
regions of chaotic and nonchaotic strange behaviour: generation and analysis of suitable 
data will be valuable. 

Finally. several avenues of further investigations suggest themselves. Of much interest 
will be the examination of coupled systems of nonlinear oscillators having different intrinsic 
frequencies, and of (formally infinite-dimensional) fluid systems with strong modal struc- 
ture forced by boundaries. We might expect to find NSAs at least in cases Lvhere one or 
t\vo oscillators dominate. effectively driving the others much as the forced systems 
considered here. Clearer understanding of several of the ‘analytical’ results is also awaited, 
especially of the spectral signature of NSAs, introduced by Romeiras and Ott [3]. and of 
the importance of the Hopf bifurcation, in the averaged system for the onset of chaos in 
the original system. which WC have dcscribocl in Section 4. Above all, as in many fields of 
dynamical systems theory, further well planned suites of numerical experiments are vital 
for the establishment of a database against which to test thcorctical ideas. 

Finally one should mention a result which was recently rcportcd by Kapitaniak [l-h]. 
hscd on ;I gencralizntion of the triadic cantor set to higher dimension El Naschic showed 
that qu;G-crgodicity is typical for four dimensional dynamical systems. The implications of 
this result for cltl;lsi-pcriuclic~llly for4 oscillator-5 and strange nonchaotic sets arc obvious. 
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