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Abstract — Evidence has accumulated in recent years of the occurrence, in certain nonlinear systems,
of strange nonchaotic attractors. that is attractors whose geometrical character is not simple, but on
and near to which the exponential divergence of trajectories. characteristic of chaotic behaviour. does
not occur. This behaviour has implications for predictability: small errors in initial conditions grow
much more slowly than in a chaotic system.

Such attractors occur commonly in quasiperiodically forced nonlinear oscillators, where their range
of existence in parameter space is substantial; we describe two particular cases. one restricted to
mechanics, the other to chemistry. Long nonchaotic transients occur in other system.

Most evidence for strange nonchaotic attractors arises from numerical experiments, and certain
spectral features have been proposed [F. Romeiras and E. Ott, Phys. Rev. A35, 4404 (1987)] as
distinguishing characteristics. Some analytical methods are also indicated which give plausible and, as
compared with numerical results, quite accurate bounds in parameter space for their existence.

1. INTRODUCTION AND BACKGROUND

The existence of strange attractors in dynamical systems has been recognised at least since
the celebrated paper of Lorenz [1], and was suspected well before that, though the term
itself appears to have been used first only in 1971 by Ruelle and Takens as a broad
description [2]. The esscntial characteristic of a strange attractor is best defined in
negatives, as for example in Romeiras and Ott [3]. Thus a strange attractor is one which is
not: a finite set of points; a limit cycle (closed curve); a smooth (piece wise smooth)
surface; and bounded by a picce wise smooth closed surface [3-6}.

This description relates to the geometrical character of the attractor, an object in phase
space towards which trajectories are drawn as time approaches infinity. It says nothing
more about the trajectories themselves, either singularly or as a class. In particular, it says
nothing about the rate of divergence of two trajectories ‘initially close together’. Neverthe-
less, for some time, the concepts of strangeness in geometrical character and of exponential
divergence of trajectories, implying great sensitivity to initial conditions or chaos, and
hence poor predictability, were widely regarded as almost synonymous.

Recently several instances have been described of nonchaotic strange attractors [3-10],
and, in some classes of forced nonlinear systems, they appear to be of normal occurrence,
that is, they persist over substantial ranges of parameter values. Such attractors are
undoubtedly strange, but the behaviour of neighbouring trajectories is no longer exponen-
tially divergent for large time even though each trajectory may have an arbitrarily complex
form. Thus the outlook for predictability of the state evolving from a given initial condition
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is much improved: small errors in describing the initial stage arising. for example. from
inaccurate observations, or from over-crude approximation, need not lead to dramatically
false results in a finite time.

This difference in qualitative behaviour motivates the identification of nonchaotic strange
attractors (NSAs), and it is convenient first of all to rehearse briefly the methods by which
the existence of strange attractors, chaotic or nonchaotic, may be deduced. In practice.
basic information usually comes in the form of time series representing the evolution of
some set of observables. w«. as functions of time. Conceptually we may think of a phase
flow

wxy) = u(t, x,)
constituting the solution of a continuous system, tor example the autonomous ordinary
differential equation
x = f(x), wherex e R”
or alternatively a set of iterates, x, of a discrete system. for example a one-dimensional
map
T: x — f(x).

Real data, relating even to a continuous system will of course often consist of a set of
values of a smooth function, . obtained at a sequence of specific times. 7. T + 1.
T+2r,....T+nt,. ..

uy(T) - u(T +1)— ... > (T + nr)— ...,

even if this is not the case it may prove useful to generate discrete data from continuous
flows by suitable Poincaré sections.

In cases where the information consists of a single time series, a basic step is to calculate
a frequency spectrum; in practice this is accomplished by usc of an FFT algorithm and
appropriate smoothing techniques.

Knowledge of the spectrum, together with judicious use of Poincaré map information,
gives much insight into the nature of an attractor. In particular, Romeiras and Ott [3] have
suggested that NSAs yield spectra having a characteristic signature; if the number of
spectral components larger than some value, o is given by N(o), then N(o) ~ 07, This
contrasts with values N(o) ~ log(1/0), N(o)~ [log(1/o)]* for two-frequency or three-fre-
quency quasi-periodic attractors respectively.

More dircct evidence of divergence or non-divergence of neighbouring trajectories is
obtained from the Lyapunov exponent. Positive Lyapunov exponents correspond to
divergence; they give a measure of the rate of growth of small perturbations to a given
trajectory, and therefore some measure of predictability. It is generally assumed that the
existence of one or more positive Lyapunov exponents is a necessary and sufficient
condition for the existence of chaos. Negative Lyapunov exponents imply decay of
perturbations and hence, in general, convergence of trajectories onto attractors of lower
dimension than the total phase space.

Methods of calculating the Lynapunov exponents, either from known differential
equations or from experimental data, are well described in the literature (sce, e.g. Wolf
and Swift [11], Wolf er al. [12]). and their relative cheapness and straightforwardness mean
that they have been the most popular indicators of chaos. It has recently been pointed out,
however, by one of us (Kapitaniak and El Naschie [13]. Kapitaniak [14]) that the
Lyapunov exponents derived from time series data may give misleading results in the case
of NSAs and that a more sensitive approach may be necessary. In the case studied the
authors demonstrated that the information dimension d; provided a much more sensitive
test. Here
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N{g)

dy =lim I(e)in (1/e) with I(e) = — >, p,In(p,)
£~0) i=1

where p, is the measure of the attractor in the ith ‘cube’ of a covering of the attractor by a
Cartesian grid of spacing €, and N(eg) is the total number of cubes. Effectively p, is
obtained by estimating the fraction of time the trajectory spends in the ith cube.

Much evidence has now been assembled [3-10] indicating the ‘normal’ occurrence of
NSAs is quasi-periodically forced systems. In Section 2 we present two examples of results,
for a quasi-periodically forced Van der Pol equation, and for a similarly forced system
describing an autocatalytic chemical reactions.

Forcing at (at least) two irrationally related frequencies is common in engineering
systems: indeed forcing at a single frequency is likely to be the exception rather than the
norm. A fortiori, in naturally occurring dynamical systems, physical or biological. a
multi-peaked spectrum of forcing is to be expected. We have examined in Section 2 the
sensitivity of a nonchaotic strange attractor, arising from quasi-periodic forcing, to the
presence of a perturbatory third-frequency forcing. Its robustness suggests that the
qualitative behaviour obtained for two frequency forcing will hold for multi-frequency
forcing. and will therefore be observed commonly in real systems. In particular we expect
to see NSAs in higher order coupled systems of nonlinear oscillators with irrationally
related intrinsic frequencies.

Theoretical understanding of the phenomenon of NSAs is incomplete, though Romeiras
and Ott [3] have argued plausibly that a condition for their existence is the existence of a
globally attracting three-torus in the essentially four-dimensional phase space of equation:

d*x/de? + vdx/dt + sinx = K + V[cosw,t + coswt]. (1.1

All trajectorics approach this torus, and we may expect a dynamics on the torus described
by

do/dt = S(D, 1)

where the ¢ dependence of S is quasiperiodic.

The strange nonchaotic NSAs reside on this torus (their strangeness has been established
in the case of the quasi-periodically forced pendulum), and chaos results from a fracturing
of the torus at an appropriate parameter value. A stroboscopic section of these trajectories
on the three-torus at times T, 2T, 3T,...nT,... yields a two-torus, on which the
dynamics may be described by an invertible map

¢ =G, 1), T= (1 + 2r0/Q)mod (2r).

This map has been shown in Ref. [3] to give rise typically to NSAs.

A resemblance is apparent between this scenario and the similar occurrence of two-tori
in the three-dimensional phase space of equation (1.1) for w, =0 (simple forcing).
Quasi-periodic behaviour on such two-tori might be expected to be broadly analogous of
non-chaotic strange behaviour on the three-tori above. This expectation is born out by the
numerical results of Section 2; the examples exhibit a remarkably close correspondence
between the regions of parameter space occupied respectively by quasi-periodic and
non-chaotic strange behaviour in the two cases.

2. QUASI-PERIODICALLY FORCED SYSTEMS

We have alluded in Section 1 to the ubiquity of NSAs in quasi-periodically forced
systems. In this section we describe two specific examples, a nonlinear oscillator of Van der
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Pol type. and a simple autocatalytic chemical reaction model [15]. Some earlier results on
the first system have been described elsewhere [8, 10]. the second system has not. as far as
we know, been investigated.

2.1.  Quasi-periodically forced Van der Pol oscillutor

We consider the equation

i

F cos wt cos Q1

(F/2)[cos(w — Q) + cos (0 + Q)t].

¥ — 241 — Br)x + wir

it

(2.1

This equation. describing an oscillator with nonlinear damping. has a stable limit cycle for
f> 0. implying the existence of robust finite amplitude free oscillations. It has been used
in innumerable models of mechanical. electrical and chemical and biological systems.
Forcing. when included. has usually been assumed to be at a single frequency. Inevitably,
real systems endure forcing at two or more frequencies, and equation (2.1) is a simple
example of this.

Detailed numerical evidence of the existence of an NSA in this system has been given
elsewhere [8.10], and its range of existence in (F. Q) space for given values of A, 5, wy,. @
is shown in Fig. 1. The corresponding largest Lynapunov exponent is shown in Fig. 2, with
regions of NSAs indicated: in these regions no positive exponent exists, but the behaviour
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Fig. 1. Domains of strange chaotic (hatched) and strange nonchaotic (dotted) attractors of cquation (2.1);
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Fig. 2. The largest nonzero Lyapunov exponent Ay, vs €20 F = 115 x [0%,
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is not quasi-periodic. Not only is this deducible from the numerics: we have established
analytically {9, 10] that no response of the form

x = Acos{wt + g;)cos (R + &) (2.2)

is possible.

Note that the region of existence of NSA is extensive in the parameter space (Fig. 3). so
that we should expect to observe such behaviour in a real system modelled by equation
2.0n.

As a test of the robustness of the behaviour to further complexities in the forcing, we
have tested the response of the system when a third irrationally related frequency is added
to the forcing function. The results are shown in Fig. 4, and relate to the equations

£ —2A1 — x*)x + x = acosQtcoswr + bcosdt (2.3)

and
£ = 2A(1 — x*)& + x = acos wtcos Lt cos ot 2.4)

respectively.

In each case regions of existence of a nonchaotic strange attractor survive, and indeed,
with three frequencies, even when the third frequency arises at the level of the small
perturbation, we find that it is impossible to have anything other than chaos or NSA. In
the case where b < a the power spectrum is typically like Fig. 5. suggesting a ‘noisy’ torus,
on which neighbouring trajectories do not diverge exponentially. We conjecture that such a
noisy quasi-periodic behaviour will be the typical response of a real system to quasi-
periodic forcing.

EXISTENCE OF TWO FREQUENCY
QUASIPERIODIC SOLUTION

STRANGE NONCHAQTIC
HOPF BIFURCATION/

b N

0y CHAOS |

ot | A

29 30 32 34 x 103

Fig. 3. Domains of strange chaotic and strange nonchaotic attractors of equation (2.1): F = 1.1 x 10%, Q = 1500.

0.1+

-0.3 -

Fig. 4. The largest nonzero Lyapunov experiment A, for equations (2.3) and (2.4): A =25, a =5, Q =2.64: (a)
two frequency foreing: @ = (. b = (; (b) cquation (2.3): @ = V3/10, b = 0.1: (¢) equation (2.4) @ = V3/10.
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Fig. 5. Power spectrum of the response of equation (2.3): A=25 a=35 Q=264 w= V210, &= V310
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2.2, Quasiperiodically forced chemical system

Our second example, which, because of its relative untamiliarity we describe more tully.
is a chemical system. We consider a model for cubic autocatalysis. developed by Gray and
Scott [15], for a simple reaction in a closed vessel which converts the reactant P to the
product C via the intermediates A. B. according to the scheme

P—- A rate = kyp
A+ 2B—-3B rate = k,ah’ (2.5)
B—C rate = Ak.b.

In the type of chemical system envisaged the concentration of the initial reactant P is
many orders of magnitude greater than the maximum concentrations attained by the
intermediates A, B, with (to be consistent) the rate of conversion from P to A being
relatively slow in comparison with the other reaction rates k. &,. Consequently we can, to
a good approximation, regard the concentration P as being constant and equal to its initial
value py,. t.e. we are making the “pooled chemical” approximation.

The differential equations governing the reaction scheme then become

dll/d[’ k(l/)” - /(1(1[)2
db/dt’ = kiab® — kb

Il

(2.6)

where ab are the concentrations of AB respectively and ¢’ is time. Equations (2.8) are
made non-dimensional by writing
a = x(ko/k )b = v(ka/kDY and 10 = kot
so that equations (2.6) become
dy/dr = u — xyv*

dy/de

-

xXvo =y

Il

where
uw= (ku[)n/’l\'l)(k ) L=

is a constant of order unity.

Equations (2.6) were originally proposed by Sel'kov [16] as a simple model for
oscillations in glycolysis, and their solution has been considered for all >0 in some detail
in Ref. [18]. Strictly, equation (2.5) implies that p decays very slowly requiring ¢ to be
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proportional to exp{—at) (a>1). This scheme has been studied by Merkin et al. {18]
where a full discussion of the application of such a scheme to chemical reactions is given.
Our basic assumption is to set a to be zero.

If we assume u to be oscillating quasi-periodically about u, with frequencies w. Q. in an
attempt to model the effects on the reaction due to fluctuating external conditions. we
coasider the system

dx/dr = (1 + £cos Qt cos wr) ~ xv°
) (2.8)
dy/dt = xy~ ~ y.

A typical set of results is shown in Fig. 6, which should be compared with Fig. 7
obtained by Merkin er al. [19] in a study of the simple sinusoidally forced reaction (i.e.
forcing function proportional to cos wt). Again note the close, but not exact, correspond-
ence between regions of quasi-periodicity in the simply forced oscillator and regions of

existence of an NSA in the quasi-periodically forced case.

Q12

ESCAPE TO INFINITY

STRANGE NONCHAQTIC
ATTRACTORS

Fig. 6. Domains of chaotic (cross-hatched) and strange nonchaotic (black) attractors of equation (2.8): gy = 0.95

w = V2/10.

012
ESCAPE TO WFINITY |
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Fig. 7. Domains of chaotic {cross-hatched) and quasiperiodic behaviour of equation (2.8): ptg = 0.95. w = 0.
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3. TRANSIENT STRANGE NON-CHAOTIC BEHAVIOUR IN PERIODICALLY FORCED
SYSTEMS

We have seen that NSAs are common in quasi-periodically forced systems. In this section
we show that transient strange nonchaotic behaviour can occur also in penodically forced
systems.

Consider the parametrically excited Duffing equation

f4+at—(1+bcosQ)x + cx® =0 (3.1

where a, &. ¢ and Q are constant (Ariaratnan er al. [19]). Examples of this equation are
found in many applications of mechanics, particularly in problems of dynamic stability of
elastic systems.

Equation (3.1) has three Lyapunov exponents: one of them is always 0, one is always
negative, and the third can change sign with the change of system parameters. This one can
be called the largest non-zero Lyapunov exponent, A. It is plotted in Fig. 3.1 as b changes
from 0 to 0.5. When b is small, A is negative and the system (3.1) does not show sensitive
dependence on the initial conditions. When & is about 0.348. A changes suddenly from
negative to positive values and the behaviour of the system becomes chaotic.

The winding number fulfils the relation

w = lim [a(t) = a(O))/t = ({/n)Q (3.2)

PR

where: (v, X) =(rcosa, rsina). [, n are integer only, or b <0.256. In the interval
0.256 < b < (1.348 we have aperiodic motion without sensitive dependance on the initial
conditions, which we call transient strange non-chaotic behaviour. Since tin 3-dimensional
phase space the combination of Lynapunov exponents (0,—.—) guarantees ultimate
approach to a limit cycle, so the observed behaviour has to be transient. This transient
behaviour differs from chaotic transient behaviour in that the nearby orbits do not diverge
exponentially. Time evolution towards a limit cycle seems to be following

chaotic — strange non-chaotic — limit cycle.

transient transient
A>0 A<
K |
0104 RMW
005 1
0
-0.05 A
-010 -

0 01 02 03 04 05
b

Fig. 8. The largest nonzero Lyapunov exponent A vs amplitude of the parametrical excitation b for equation (3.1).
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The Poincaré maps for the parameter value close to the boundary between transient
strange nonchaotic behaviour and chaotic attractors are shown in Fig. 9(a,b).

The system (3.1) has three equilibrium positions, at x = 1, 0 and X = 0. Depending on
the initial conditions it can exhibit oscillations around one of the two stable equilibria
x = *1, ¥ =0, a small ‘orbit’. or around all three equilibria, a large ‘orbit’ (see Fig. 10).

In Fig. 11 we show the plot of maximum deflection X from equilibria x = 1, ¥ =0 in
the case of motion on the small orbit, and from equilibrium x =0, x =0 in the case of
motion on the large orbit.

For the initial conditions leading to the oscillations on the small orbit it is found that this
type of oscillation exists up to b = 0.308, when we have a sudden transition to the motion

(@) X

(b} X
Fig. 9. Poincaré maps; (a) transient, 1 = 10°T, b = 0.34; (b) b = 0.35.
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Fig. 10. The large and small orbits of the system (3.1): (a) I type collision. (b) I type collision.
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Fig. [1. Maximum deflection .V vs amplitude of excitation b for equation (3.1): the hatching” indicates strange
nonchuaotic transtent behaviour, and the “cross-hatching’ chaotic behaviour.

around three equilibria with a long aperiodic transient. This sudden transition is connected
with the collision of the small orbit with a non-stable orbit around x =0, ¥ = 0. We call
this event a type 1 collision. Next, at b =0.348 we observe a transition to chaotic
behaviour.

For the initial conditions for which the large orbit is possible. we find that this orbit is
stable only for 0.248 > b > (0.256. For b > 0.248. only the oscillations on the small orbit are
stable. At b =(.256 we observe the collision of the large orbit with the unstable orbit
around x =0, ¥ =0, a type Il collision. and for larger / we observe transient strange
non-chaotic behaviour., As in the first case. for b = 0.348, we observe transition 1o chaotic
behaviour.

We can also fix the value of b to correspond to motion on a strange non-chaotic
attractor. and change the values of a. The plot of deflection X versus « is shown in Fig.
12. As a increases from 0.1 to 0.181 we observe periodic motion on the small orbit. At
a = 0.181 a colliston of type I occurs and transient strange nonchaotic behaviour ensues,
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Fig. 12. Maximum deflection X vs damping coefficient a for equation (3.1).

this existing up to a = 0.212, when another type I collision takes place, and we have a
return to periodic oscillations on the small orbit.

4. IDENTIFICATION AND PREDICTION OF NONCHAOTIC STRANGE ATTRACTORS

The results we have presented in earlier sections have all becn obtained, as have those of
other workers, by direct numerical computation of indicators. Markedly different spectral
characteristics separate NSA behaviour from quasi-periodic behaviour, and calculation of
Lyapunov exponents provides further evidence, reliable when the basis of calculation is a
known mathematical system, but to be used with care when the only source of information
is actual data. In this latter case, which is of course likely to be the usual one in situations
of rcal physical concern, secure evidence is obtainable only by use of much more
computationally demanding dimension calculations.

The practical indications for predictability associated with the existence of NSAs makes
some form of analytical prediction highly desirable; we have found that two approaches
yield promising results [8, 10].

Firstly we can find limits on parameter values for the existence of a purely quasi-periodic
response to quasi-periodic forcing. The method uses a theorem first proved by Urabe [20],
and an example of the resulting predicted boundary in parameter space is given in Fig. 13,

Briefly the theorem quarantees the existence of a quasi-periodic solution (2.2) of the
equation (2.1) if the inequality

C = (1/529)"") {(wj = A)/(2 + 22)} (4.1)
is satisficd, where the constant, C is given by
C = max {(F2)/lwj — (R — w)*| + (F2)/|wj — (Q + w)*|.
(F/2)(Q — w)/lwf — (Q — w)?| + (F/2)(Q + w)/lw] — (Q + w)?].

This result may be extended to establish conditions for the existence of higher harmonic
quasi-periodic responses as follows. If the condition (4.1) does not hold, i.e. if there is no
simple quasi-periodic solution of the form (2.2), we can expect more complicated
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Fig. 3. Boundary of existence of the solution (2.2) (broken line) and boundaries of Hopf bifurcation (solid line)
for equation (2.1). (system parameters as in Fig. 1).

quasi-periodic solutions of the form

m

x(1) = B(0,0) + 2 > (C,cos(p, vt + D, sin(p. v)r} (4.2)

SUip

where (p.v) = povi+ pava pl =lpd +palo vi= Q =, v = Q + o, the unknown coeff-
icients B(0.0), C,B, can be determined by any approximate method (for example
Galerkin).
For the computed approximation (1) = (¥(r). X (1))7
Nl

x(1) = B, 0) + 5 {C cos(p. vit + [3,, sin{p, vt}

byl ot
we have the residual function
R(1) = T — 241 — BEH)T + wit — F(cos vt + cosvar).
Expanding R(r) in finite double Fourier serics one obtains

I

R(ty = b0, 0) + > > {cpcos(p, V)t + d,sin(p, v)i}.

r=1ipl=r

Next define

RO

= [h(0.0) + X 2 {le| + 1d,1}

r=1|pl=r

have

If we now introduce

and
T =2 2 o vlle ] + [d)

then we have the inequalities



Strange nonchaotic attractors 335

T = sup |2(2)|
T’ = sup |x(1)].
If the solution z lies in a &-neighbourhood of Z(t) = [£(t), X(¢)]7 we have
W(z.2) — AW s 2M{TQRT' + T) + 2(t' + 2T)6 + 36%) 4.3)

Taking into account (4.3) we have the following results: if there exists 2 non-negative
number x < 1, and a positive number 9 satisfying both inequalities

MTQT + T) + AT +2T)6 + 38%)} < (A/2)(1 = A)Rk/f2(2 + 217
2r2 + 20V A0 - (1 - AP < $

then by the theorem of Urabe, the quasi-periodic solution (4.2) exists.

A second analytical condition, which apparently gives an approximation to the boundary
between nonchaotic and chaotic behaviour, is obtained by seeking Hopf bifurcations in a
simpler system of ordinary differential equations obtained from (2.1) by a suitable
averaging procedure. The details have been fully described elsewhere, and typical results
are included in Figs 3 and 13.

Aside from these two partly analytical results, detection of NSAs has been achieved
through direct numerical analysis of data; calculation of spectra or calculation of some
derived quantity, for example either Lyapunov exponent or some form of information
dimension is required.

Romeiras and Ott [3] have proposed a method based on direct analysis of spectra.
Introducing N (o), defined as the number of spectral components larger than some value o,
they conjecture that N(o) ~o¢~* for NSAs in contrast to N(o)~1n(1/8) for two
frequencies quasi-periodic attractors and N(o) ~ In?(1/0) for three frequencics quasi-
periodic attractors. Evidence for such distinctive spectral behaviour in the forced damped
pendulum equation was adduced by them.

An alternative approach, based on Lyapunov exponents, has been proposed by Ditto er
al. {21] and Kapitaniak [14]. Estimation of Lyapunov exponents is rcliable when the
cquations driving the system are known but is not reliable when used on data obtained
from a long time series of observations in a case where the equations arc unknown. In this
second case, in order to distinguish between chaotic and non-chaotic attractors, the
propertics of information dimension d; are used. The presence of two-frequency quasi-
periodic forcing guarantees that every attractor will be at least two-dimensional. According
to Kaplan-Yorke conjecture [22] the information dimension of strange nonchaotic attrac-
tors is d; = 2. In practice the dimension estimation is performed on the surface of cross
section of the attractor, reducing all dimensions by one, i.e. a strange nonchaotic attractor
occurs if the information dimension of an attractor on the cross section is d; =1 and a
chaotic attractor occurs if d| = 2. More details of this method are given in Ref. [14].

5. DISCUSSION AND SUMMARY

Our objectives in this paper have been threefold. Firstly to draw further attention to the
occurrence of a type of behaviour in nonlinear dynamical systems which is complex, but in
which neighbouring trajectories do not diverge exponentially, as they do when the
behaviour is chaotic. We have attributed this behaviour to the existence to a nonchaotic
strange attractor (NSA). Secondly we have stressed the robustness of such a behaviour,
particularly in systems which arc quasi-periodically forced, and thirdly we have described
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methods for the detection of NSAs and for the establishment of bounds in parameter space
for their existence.

The distinction between an NSA and a strange attractor is likely to be important when
detailed calculation of trajectories is required. Though trajectories may appear equally
complex in the two cases. small errors in an initial condition will remain small for far
longer if we have an NSA, and we should expect much better predictability. Though
transient non-chaotic strange behaviour is possible in periodically forced systems. it seems
that permanent NSAs occur widely for systems which are forced quasi-periodically and that
they persist when the forcing has still more independent trequencies. Indeed. the
parameter space for a system forced at multiple frequencies may well be divided into
regions of chaotic and nonchaotic strange behaviour; generation and analysis of suitable
data will be valuable.

Finally. several avenues of further investigations suggest themselves. Of much interest
will be the examination of coupled systems of nonlinear oscillators having different intrinsic
frequencies, and of (formally infinite-dimensional) fluid systems with strong modal struc-
ture forced by boundaries. We might expect to find NSAs at least in cases where one or
two oscillators dominate. effectively driving the others much as the forced systems
considered here. Clearer understanding of several of the ‘analytical’ results is also awaited,
especially of the spectral signature of NSAs, introduced by Romeiras and Ott [3]. and of
the importance of the Hopf bifurcation, in the averaged system for the onset of chaos in
the original system. which we have described in Section 4. Above all, as in many ficlds of
dynamical systems theory, further well planned suites of numerical experiments are vital
for the establishment of a database against which to test theoretical ideas.

Finally onc should mention a result which was recently reported by Kapitaniak [14].
Based on a genceralization of the triadic cantor set to higher dimension EI Naschic showed
that quasi-ergodhcity is typical for four dimensional dynamical systems. The implications of
this result for quasi-periodically forced oscillators and strange nonchaotic sets are obvious.
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