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1. INTRODUCTION 

In contrast to the evolution of the velocity field of a fluid, which is governed by the Navier- 
Stokes partial differential equations, the trajectory of a fluid particle is governed by an 
ordinary differential equation. Consequently, in a Lagrangian description of a fluid, the 
results of dynamical systems theory for autonomous ordinary differential equations may 
be used directly. In this way the observed randomness of Lagrangian turbulence might be 
interpreted as deterministic chaos [I]. In the present work we give simple arguments based 
upon a classical elastic model to confirm the existence of chaotic diffusion-like particle 
paths in the presence of deterministic wave-like fluctuations. There are numerous analogies 
between elastomechanical and hydrodynamical problems, such as that holding between 
the shape of a free fluid surface under tension and the bending of an elastic wire. In the 
following, we use another analogy relating to the Euler elastica shown in Figure 1 and 
described in Appendix B [2-61 and to the lateral displacement of a fluid particle due to 
the motion of a circular cylindrical solid body in a two-dimensional flow described in 
Figure 2 and Appendix A [7,8]. 

2. PSEUDO-RANDOM WALK OF A FLUID PARTICLE 

Consider a circular cylinder of radius a moving in a liquid when its center is at the 
origin of a fixed Cartesian system (x, y) (see Figure 1). It is easily shown that the curvature 
of the path of a fluid particle which is displaced laterally by the cylinder is given by (see 
Appendix A) 

K’= 2/a2(2y - ?7), (1) 

where 17 =y( 1 - a2/r2). Noting that K = @’ = dO/ds, where s is the arc length of the path 
and @ is the slope of the path, we may differentiate the previous equation once and find 
that 

@“= (4/a2)(dy/ds). (2) 

t Permanent address: Control and Dynamics, Technical University of Lodz, Stefanowskiego l/15, 90-924 
bdz, Poland. 
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Figure I. The elastica. 

Since dy/ds = sin 0, with A = 2/a one obtains 

cD”-j12sin @=O. (3) 

Equation (3) has obviously the same form as the classical elastica equation of Euler 

@“+i1’sin @=O (4) 

(see Appendix B). One can transpose equation (3) into equation (4) by the change of 
variable CD + A + @. The elastica equation of Euler is related to the oscillations of a 
pendulum around its lower stable equilibrium point, while equation (3) can be related to 
the oscillations of a pendulum oscillating around its upper unstable equilibrium point. 
Both equations (3) and (4) have saddle points at @ = klr, k= 0, f I, f2, . . . , and the 
heteroclinic orbit given by 

@ = it2 arctan (sinh s), @’ = f2 sech s. (5) 

Using the Melnikov method one can find small perturbations which when added to equa- 
tions (3) or (4) can lead to the transverse intersection of stable and unstable manifolds 
[9]. These intersections show the possibility of chaotic behaviour (temporal in the pendu- 
lum and spatial in problems of elastica or the lateral displacement of a fluid particle due 
to the motion of a cylinder). 

+ 
x 

Figure 2. The path of a fluid particle laterally displaced by a rotating cylinder. 

Consequently, we may state that these looped stereophoid-like paths, which were drawn 
long ago by J. Maxwell and G. I. Taylor [ 10, 1 I], are spatial heteroclinic orbits. In other 
words, they are related to spatial separatrices corresponding in a dynamical analogy to a 
heteroclinic orbit in phase space [4,6, 121. It then follows that the entire chain of reasoning 
used previously in establishing the possibility for statical loop soliton chaos in the Euler 
elastica [4-6, 121 may now be carried over to show that deterministic wave-like fluctuations 
could lead in the appropriate region of parameters and initial conditions to a completely 
chaotic particle path. The loops themselves may still persist but their spatial distribution 
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will be erratic and wiil differ essentially from the classical picture given in textbooks. Now, 
due to the intimate relation between the stability of orbits with irrational winding numbers, 
damping and random walk, we feel that the preceding discussion might be relevant for the 
interpretation of a diffusion-like process [ 131. 

It might even be that the analogy with the elastica can be taken one step further by 
using the analogy between the elastica and the elastic circular ring under external pressure 
[ 12, 14, 151. Thus, we might expect that circular motion of a circular cylinder in a fluid 
will produce similar diffusion-like behaviour of the fluid particles in a circular container. 
However, what may be even more interesting is what could happen if we have vortices in 
the fluid. We discuss this next. 

3. CHAOTIC VORTICES, CORNU SPIRALS AND THE FLUTTERING ELASTICA 

In the previous section we considered the effect of a cylinder moving in a fluid. Here we 
consider two circular cylinders in a fluid stream [S]. In this case, as is well known, two 
kinds of streamlines form, as shown in Figure 3(a). Now as we let the radius of the cylinder 

a) 
,- 

Figure 3. The evolution of streamlines of a flow with two cylinders as the radius of the cylinders shrinks [g]. 

shrink we obtain the sequence shown in Figures 3(b) and (c). Anyone who has observed 
the motion of travelling loop solitons in a long flexible wire [6, 161 will notice the similarity 
between them and the vortices shown in Figure 3(c), which can easily be made visible in 
an actual experiment. It is this similarity which was the motive for trying to model some 
of these fluid motions by using the elastica. In the case of a Hamiltonian system, the model 
was relatively straightforward and adding parametrical imperfection (see Appendix B) we 
found some interesting spatially chaotic deformations for equation (4) with parameters 
ilz = +0.0272222, CI = 0.15 and o = 1, as shown in Figure 4. However, some problems arise 
in the spatial interpretation of positively and negatively dissipative elastica. In the case of 
positive dissipation, i.e., damping, this may be interpreted as non-conservative tangential 
friction forces akin to the so-called follower forces discussed in references [5, 121. Negative 
dissipation is consequently the adjoint system, the so-called flutter set [ 121. We may men- 
tion that the inclusion of this type of negative damping was motivated by some problems 
connected to protein deformation. The results of our numerical experiments are shown in 
Figures 5 and 6. The spatial entanglement (Figure 5) obtained for equation (B7) (A*= 1, 
a = 0.94, k = 0.15, w = 1.56), which looks quite similar to randomly coiled polymer chains, 
is quite interesting. They correspond in the dynamical analogy to the region of a strange 
attractor in a parametrically excited system [9]. However, the most interesting numerical 
results are those with spiral-like chaos deformation of Figure 6, obtained for equation 
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Figure 4. Spatial soliton loop chaos of the imperfect Hamiltonian elastica (B6): A*= +0.0272222, a=O. 15, 
w=l, @(0)=6, W(O)=O. 

Figure 5. Spatial entanglement of the dissipative elastica (B7) : k = 0.15, a = 0.94, A* = 1, w = 1.56, correspond- 
ing to a strange attractor in the dynamical analogy. 

Figure 6. Loop and spiral chaos in the imperfect flutter elastica (87): 1’=+0.272222, a=0,15, k=-0.01, 
ar=l, 0(0)=6, W(O)=O. 



LE-ITERS TO THE EDITOR 519 

(B7) (k = -0.01, a = 0.15, A2 = +0*0272222, w = 1, <p(O) = 6, a’(O) = 0). They strongly 
resemble some of the pseudo-random Cornu-like spirals (see Figure 5) found, for example, 
in the Riemann sums approximating oscillatory integrals [ 171. They bear also some simi- 
larity to the Bernhard-Karman vortices (see Figure 8) [7,8, 10, 111. The existence of loops 
on several scales shown in the computer blow-up of Figure 9 may be of special interest. 

(a) (b) 

Figure 7. Regular (a) and irregular (b) Comu-like spirals [IT]. 

Figure 8. Some experimental studies of vortex wake. 

In Figures 4-7 and 9 the spatial plots of the response of the appropriate equation (B6) 
or (B7) are presented. These equations have been solved numerically by the fourth order 
Runge-Kutta method with integration step 2n/2OOw. The spatial plot has been obtained 
by plotting x as given by equation (B2) us. y described by equation (B3). 

4. CONCLUSIONS 

The elastica and, in particular, the imperfect flutter elastica provides a surprisingly 
simple model which reflects some fundamental aspects of diffusion and turbulence-like 
behaviour in fluids. Of course, we can never show true chaos by using our numerical 
technique. Nevertheless, by using the pre-entropy related ideas of Kahlert and Rossler [ 191 
we can show asymptotic chaos [2]. When we observed the spiral chaos of the elastica we 
were initially inclined to regard it as only a numerical instability phenomenon. However, 
repeated independent calculations by different methods have convinced us that spiral chaos 
is a true feature of the non-linear dynamics of our model. The appearance of self-similarity 
on many scales which these spirals reflect shows that we are dealing with phenomena which 
may be linked to mixing and diffusion-like processes. 

The modification of our elastica model allows us to mimic to some reasonable extent 
the well known Karman vortex street created in a fluid by the movement of the cylinder 
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(b) (d) 
1 

Figure 9. Computer blow-up of the turbulence spirals of the flutter elastica (B7) (A*, a, k, w as in Figure 6) 
showing the existence of loops on many scales: (b) enlargement of the box from (a); (c, d) initial details. Note 
also the similarity to turtle geometry [ 181 and that the loop is the building block of the geometrical form. 

at certain Reynold numbers [S] (see Figures 4-6). It is interesting to note that extending 
the elastica analogy to a circular elastica coiled infinitely many times inside a ridged 
confinement shows a striking resemblance to the ergodic properties of diffusion processes 
and billiard dynamics in a magnetic field. 

Finally, we have pointed out the similarity of these vortices to travelling loop solitons 
[ 16,201, turtle geometry [18], and the Cornu-like spiral chaos which arises in Riemann 
sums approximating oscillatory integrals [ 171 (see Figure 5). 
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APPENDIX A: THE DIFFERENTIAL EQUATION OF A FLUID PARTICLE 

Consider fixed axes X, y at the instant when the center of the cylinder is at 0, and polar 
co-ordinates r, 4, the origin of which also coincides with the center of the cylinder (see 
Figure 1). The particle at the point P(x, y) is moving with velocity CJu2/r2 at an angle 0 
with the radius vector and therefore the tangent to the path of P makes an angle $ with 
x, where cf, = 24. Hence, the curvature of the path of P is given by 

K= l/R=d@/ds=(d@/dy)(dy/ds)=(d@/dy) sin a’, (Al) 

where R is the radius of curvature and Cp = 24 is the slope of the path measured from the 
horizontal x direction of the motion. On the other hand, the streamline is given by 

rj = y( 1 - a2/r2), (W 

and noting that sin 4= sin (a/2) =y/r one can eliminate r and find 

n=y[l -a2 sin (@/2)2/y2]. (A3) 

This may be written as 

(sin (@/2))2=(lla2)(~2- 17~)~ (A4) 

and differentiating both sides as a function of y one finds 

(A5) 
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Hence 
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(l/a2)(2Y-n)=sin @d(@/2)/dY=0.5sin @d@/dY, (A6) 

or 

(d@/dY) sin @ = (2/a2)(2Y - q), (A7) 

where the constant 7 gives the initial and final distances of the particle. Differentiating 
equation (A6) one finds 

@“= (4/a*)(dY/ds). (Ag) 

Noting that dY/ds = sin @ one obtains 

a”-L*sin @=O, (A9) 

where d=2/a. Equation (A9) has the same form as the equation of the elastica (see 
Appendix B) . 

APPENDIX B: THE EQUATION OF THE ELASTICA 

1. The Hamiltonian equation of the perfect initially straight elastica corresponding to 
an undamped pendulum is 

@“+a2 sin @=O, (Bl) 

where @ is the angle of inclination of the central line of the elastica (see Figure I), (‘) = 
d( )/ds and s is the arc length of the deformed elastica which is assumed to be totally 
inextensible. Consequently, 0’ is the curvature of the deformed (buckled) elastica. The 
parameter 1= JP/a corresponds to the natural frequency, where P is the axial load and 
a is the bending stiffness. This means that the bending moment is M= a@‘. 

The displacement (x, Y) may be calculated from the formulas 

s 

s 

s 

S 
x(s) = cos @(s’) ds’, Y(S) = sin @(s’) ds’. (B2-B4) 

0 0 

2. The imperfect elastica corresponding to a periodically excited pendulum is 

W’ + A2 sin @ = a sin ws, (B5) 

where a is a measure for the amplitude of the harmonic axial imperfection (crookedness) 
of the central line and o is the frequency of this periodic spatial imperfection. 

3. The elastica corresponding to a parametrically excited pendulum is 

0”+ d2 sin 0 = a sin OS sin @. (B6) 

4. The elastica corresponding to a parametrically excited pendulum with positive (or 
negative) damping is 

W-t d2 sin @ &k@’ = a sin OS sin @, (B7) 

where k is the constant of linear positive (or negative) dissipation. For more details and 
derivation see references [4, 121. 


