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Transient behaviour has always played an important role in various areas of science. In 
the past two decades it has been found that strange attractors are common in the realm 
of non-linear systems. 

Although chaos is an asymptotic property which manifests itself only after a very long 
time (for example, Lyapunov exponents are defined only in the infinitely long time limit) 
it is possible to define chaotic transients. 

Let 2 be the internal characteristic time of the system: i.e., for continuous time problems 
2 can be the average turnover time of trajectories in phase space, or, in non-autonomous 
systems, the reciprocal value of the driving frequency. 

A necessary condition for aperiodic (random looking) transient signals of average life- 
time r, to be strange is that they last much longer than the internal characteristic time: 
i.e., 

r$Z. (1) 

For t < z the Poincare map of the system has a fractal structure. 
If criterion (1) holds and the system is characterized by sensitive dependence on initial 

conditions up to a lifetime r, (a positive maximum Lyapunov exponent for t < T,), this 
type of transient is called chaotic. 

If, on the other hand, condition (1) holds and the system does not show sensitive 
dependence on initial conditions (a non-positive maximum Lyapunov exponent for 
rsc < t < 5,) we have a strange non-chaotic transient. Of course if r, = r, we do not observe 
strange non-chaotic transients. Typical time series without strange non-chaotic transients 
and with them are shown in Figures l(a) and (b). 

Both transiently strange signals have the following properties. They look strange up to 
the time r, and then switch over into non-strange behaviour, which governs all the rest of 
the signals. 

Transient chaos was first observed in the Lorenz model with fixed points [ 1,2] and the 
limit cycle [3] as an attractor. Subsequently, many papers reported this phenomenon in 
various types of non-linear systems: non-linear oscillators [4,5], delay equations [6], par- 
tial differential equations [7, 81 and coupled map lattices [9, lo]. 

Until now there have been no reports on strange non-chaotic transients. The possibility 
of the existence of this new type of transient behaviour is shown in what follows. 

Consider the parametrically excited Dufhng’s equation 

f+azi-(I +b cos 12t)x+cx3=0, (2) 

where a, b, c and R are constants [ 111. Examples of this equation are found in many 
applications of mechanics, particularly in problems of dynamic stability of elastic systems 
WI. 
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Figure 1. Time series without strange non-chaotic transient (a), and with it (b). 

In the numerical calculations we have used the fourth order Runge-Kutta method with 
the integration step being T/200, where T=2a/R. Lyaptmov exponents have been 
obtained using the method of Wolf er al. [ 131. 

Equation (2) has three Lyapunov exponents: one of them is always zero, one is always 
negative, and the third one can change its sign with changes in the system parameters. 
One can call it the largest non-zero Lyapunov exponent: A. If A is negative we have the 
limit cycle attractor if A is positive we have the strange chaotic attractor and if d= 0 a 
torus is an attractor [ 14,211. The largest non-zero Lyapunov exponent il for t+ 00 is 
plotted in Figure 2 as b changes from 0 to 0.5. if b is small, A is negative, and so the system 
(2) does not show sensitive dependence on the initial conditions. When b is increasing up 
to about 0.348, A changes suddenly from negative to positive values, and the behaviour 
of the system is chaotic. 

Figure 2. The largest non-zero Lyapunov exponent A VS. amplitude of the parametrical excitation b. 
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If one considers the dependence of the winding number 

w(b) = lim (a(t) - a(O))/t, (3) I--rOD 

where (x, a) = (r cos a, r sin a), t$ rC, on the parameter b it is found that the relation 

w/n = i/n, (4) 

where I and n are integers, is satisfied only up to values of b=O-256. In the interval 
bE(O-256,0.348) we have aperiodic motion without sensitive dependence on the initial 
conditions. As a combination of Lyapunov exponents (0, -, -) indicates the limit cycle 
as an attractor this behaviour has to be transient. The Poincare maps for the parameters 
close to the boundary between transient strange non-chaotic behaviour and chaotic attrac- 
tors are shown in Figures 3(a) and (b). The map shown in Figure 3(a) is transient for 
t<zs. 

Figure 3. Poincad maps: (a) transient, r= lo?“, b=0.34; (b) b=0.35. 
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System (2) has three equilibrium positions : x = f 1,O and 2 = 0. Depending on the initial 
conditions it can exhibit oscillations around one of the two stable equilibria x= kl, 
x=0-small orbit-or around all equilibria-large orbit (see Figure 4). 

Typo I wlllsi~~~ 
whit 

(a) (b) 

Figure 4. The large and small orbits of the system (2): (a) type I collision; (b) type II collision. 

In Figure 5 we show the plot of the maximum deflection X from the equilibria x = f 1, 
i=O in the case of motion on the small orbit and from the equilibrium x =O, ii-=0 in the 
case of motion on the large orbit. 

For the initial conditions leading to oscillations on the small orbit it has been found 
that this type of oscillation exists up to b=0+308, where we have a sudden transition and 
we observe transient motion around three equilibria, but on the aperiodic trajectory. 

This sudden transition is connected with the collision of the small orbit with the non- 
stable orbit around x = 0, 2 = 0. We call this event the type I collision. Next, at b = O-348, 
the transient strange non-chaotic behaviour disappears and we have chaotic behaviour. 

For the initial conditions for which the large orbit is possible we found that this orbit 
is stable only for be (0.248, 0.256). For b < 0.248 only the oscillations on the small orbit 
are stable. At b = 0.256 we observe the collision of the large orbit with the unstable orbit 
around x = 0, Z? = 0 (the type II collision) and for larger b the motion is characterized by 

04 Type I wlllalon 
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Figure 5. Maximum deflection X us. amplitude of excitation b./ ..,‘A ‘,: , Strange non-chaotic transient behav- 
iour; m , chaotic behaviour. 
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transient non-chaotic behaviour. As in the first case, for b=0.348 we observe transition 
to chaotic behaviour. 

Next, we fixed the value of b equivalent to the motion with transient strange non-chaotic 
behaviour and changed the values of a. The plot of deflection X CU. a is shown in Figure 
6. Increasing a from 0.1 to 0.181, we observe periodic motion on the small orbit. At a= 
0.181 a collision of type I occurs and we have a sudden transition to the motion with 
transient strange non-chaotic behaviour, which exists up to a=0.212 when another type 
I collision takes place, and we have the transition to periodic oscillations on the small 
orbit. 

Figure 6. Maximum deflection X vs. damping coellicient a; b = 0.34. 

The lifetime of the observed transient strange non-chaotic behaviour is relatively long 
(r, = 106-10’oT have been observed). It is much lo&r than the chaotic transient lifetime 
rc, which has been observed to be in the range lo*-103Z’. Both rs and t, strongly depend 
on the initial conditions. 

Strange non-chaotic attractors have been shown to form part of the normal pattern of 
behaviour in quasiperiodically forced non-linear oscillators in four-dimensional phase 
space [ 17-251, and their presence has been demonstrated by a number of numerical 
investigations. 

The evolution of our system (2) takes place in three-dimensional phase space, where 
strange non-chaotic attractors or even repellers are not allowed. Strange non-chaotic 
transients which have been found for equation (2) show the same property as typical 
trajectories on strange non-chaotic attractors for t < rs . 

Non-existence of strange non-chaotic repellers for equation (2) shows that strange non- 
chaotic transients cannot be connected with them as most chaotic transients can be con- 
nected with chaotic repellers [ 161. 

By application of the Melnikov method it is easy to show the existence of transversal 
homoclinic points and horseshoe maps for 

b > (4a/31ra2) sinh (nR/2) : (5) 

i.e., for the values for which we have observed strange non-chaotic transients. The 
mechanism responsible for strange non-chaotic transients of equation (2) is the same as 
for chaotic transients (unstable strange set produced by the horseshoe map). In our case 
the maximum Lyapunov exponent turns negative far before the transients have died. 
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The appearance of strange non-chaotic transients after the collision of stable and 
unstable orbits of system (2) seems to be connected with the well-known property that 
chaotic transients typically appear in systems passing through a crisis configuration 
[15, 161. 

It should be noted here that there is a possibility of other types of strange non-chaotic 
transients in at least four-dimensional phase-space, where they are produced by strange 
non-chaotic repellers [ 261. 
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