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Chaos and noisy periodicity in forced ocean-atmosphere models 
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We examine two models, each consisting of coupled nonlinear oscillators, which represent coupled ocean-atmosphere dynamics 
on climatic and seasonal timescales respectively. In each ease, the addition to a single frequency forcing of an extra forcing, itself 
either single frequency or stochastic, is able to modify a chaotic response to one of noisy periodicity, reminiscent of actual fluc- 
tuations on ice-age or El Nifio timescales. 

1. Introduction 

The occurrence of multiple equilibria and of cha- 
otic behaviour in nonlinear oscillators subjected to 
periodic forcing is widespread and well known. An 
example is the Dufting equation, which we may write 
as 

~+  k~+x3 = B  cos ~2t, ( 1.1 ) 

arising almost ubiquitously in models of mechanical 
oscillations, which has been extensively studied 
[1,2]; for a useful summary see ref. [3]. The pa- 
rameter space of (1.1) is divided with great com- 
plexity into regions of different qualitative behav- 
iour, and the space of initial states is divided with 
similar complexity into the basins of attraction of 
competing attractors, which may be steady, periodic 
or chaotic. Solutions in chaotic regimes are often 
characterised by behaviour which may show some 
regularity over short timescales with occasional sub- 
stantial deviations, as the trajectory spends time slow- 
moving near one unstable equilibrium between spo- 
radic excursions to the neiglabourhood of another. 

Aperiodicity is the first apparent characteristic of 
the behaviour of  many geophysical fluid dynamic 

systems, but atmospheric and oceanic flows often ex- 
hibit substantial coherent features, localised in either 
or both of space and time, which occur sporadically 
and unpredictably but with a certain statistical reg- 
ularity. Such features are exemplified by blocking 
patterns in the mid-latitude atmosphere or by per- 
sistent anomalies (of which El Nifio is the most 
spectacular) in sea surface temperature. Fig. 1 illus- 
trates the essential character of El Nifio events and 
also their dynamic and often seriously damaging ef- 
fects on local climatic phenomena like rainfall. On 
a different timescale, fluctuations in climate display 
similar characteristics, distinguished by quasi-regu- 
lar "anomalies" on timescales of decades to hundreds 
of thousands of  years. Fig. 2 summarises in spectral 
form the incidence of ice ages over the past million 
or so years. 

The existence and persistence of such features is 
reminiscent of the behaviour described by a solution 
trajectory of a nonlinear oscillator wandering near to 
one unstable equilibrium and making occasional ex- 
cursions to the neighbourhood of  a second unstable 
equilibrium. This similarity in behaviour has stim- 
ulated the development of simple conceptual models, 
usually taking the form of forced or coupled nonlin- 
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Fig. 1. (a) Mean monthly precipitation at Nauru Island. (b) Departure from mean of Eastern Pacific sea surface temperature (solid 
line) and southern oscillation index (dashed line). 
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Fig. 2. Power spectrum of  the ice volume based on deep-sea co- 
res; KA= 1000 years; broken line indicates spectrum of  red-noise- 
like background. 

ear oscillators, representing to a greater or less extent 
the assumed essential physics. The common feature 
of such models is the assumption that ocean-  

atmosphere coupling (perhaps enriched by variation 
of ice extent) is a crucial physical ingredient, and that 
the annual cycle of  solar heating, modified as nec- 
essary to include effects of  orbital variations, is an 
important driving mechanism. 

An excellent overview of coupled ocean-atmo- 
sphere models of  E1 Nifio and the so-called southern 
oscillation has appeared recently [4] whilst similar 
reviews of climatic models are contained, e.g., in refs. 
[5,6]. 

In this paper we examine two models, each con- 
sisting of coupled nonlinear oscillators, which rep- 
resent coupled ocean-atmosphere dynamics in a 
simple way on appropriate timescales. In the first, 
based on the model of Saltzman et al. [ 7 ] of  cou- 
pling between sea-ice extent and ocean temperature, 
we have added to the existing astronomical forcing 
an extra periodic forcing compatible with the earth's 
orbital variations. We have also considered an extra 
forcing in the form of band limited white noise. In 
the second, based on a model by Vallis [ 8 ] coupling 
local temperatures in the East and West Pacific with 
a current strength generated in part by these tem- 
perature differences, we have added to the annual 
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forcing a second stochastic forcing compatible with 
the 20-60 day period of forced atmospheric Kelvin 
modes. 

In each case, numerical experiments have indi- 
cated the replacement of chaotic behaviour in the 
singly periodically forced problem by "noisy peri- 
odicity" in the "quasi-periodically" forced problem. 
Here we use "noisy periodicity" in the sense intro- 
duced by Lorenz [ 9 ] to describe the temperature 
trace associated with the passage of "regular" waves 
in rotating heated annulus experiments (see, e.g., ref. 
[10] ). The mean period of response is surprisingly 
different from either of the forcing periods, and is in 
the second case qualitatively similar to that of the E1 
Nifio events. 

2. Long-term climatic variability: 
the Saltzman et al. oscillator 

Long-term climatic variation, characterised most 
dramatically by the sequence of ice ages during the 
last million or so years, has been widely attributed 
to self-sustained oscillations arising from coupling 
between sea-ice extent and mean ocean temperature. 
A simple model proposed by Saltzman et al. [ 7 ] has 
received much attention, and Nicolis [ 11,12 ] has 
shown that the addition of periodic forcing to the 
model of Saltzman et al., intended to simulate vari- 
ations in radiative heat input associated with vari- 
ations in the earth's orbit (on timescales o f O (  10 ~) 
years), can produce a chaotic response. 

Following Nicolis, we can write the system in the 
succinct form 
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(b) 
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Fig. 3. (a)  Poincar6 map  (interval 2 n / ~ )  for eqs. (2.1) .  Following Nicolis [ 5 ] we have chosen 71 = 1.01, 72 = 1,/~ = 0.1, q =  0.74, Q =  0.3. 
( b ) Poincar6 map  for eqs. ( 2.1 ) with an addit ional term a sin tot, with a = 0.05, to = 3 X 104; other  parameter  values as in (a ) .  (c)  Mean 
Poincar6 map  for eqs. (2.2).  Here to~ e [ 0.2, 0.4] and other  parameter  values are as for (b) .  (d )  Mean Poincar6 m a p  for eqs. (2.2) with 
larger value of  a ( = 0.25 ). 
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~9=72x-x3+pQ, l y -xZy+q sin f2t) ,  (2.1) 

where x and p x + y  are respectively the scaled devia- 
tions of  the size of  sea-ice extent and of mean ocean 
temperature from reference states. 

For varying ~,~, )'2, #, q and g2, the response of this 
oscillator of  course demonstrates the usual range of 
qualitative behaviour. For some values of  the pa- 
rameters of  climatic significance, the behaviour is 
unmistakably chaotic, and fig. 3a comprises a Pion- 
car6 map for such a set of  values. The addition to the 
forcing in (2.1) of  a term a sin tot, choosing a = 0.05 
and to= 30000, to represent the weak annual forcing, 
has a dramatic effect on the Poincar6 map, now re- 
produced as fig. 3b. The chaotic map is replaced by 
a map which corresponds to motion on a torus, in- 
dicating a quasi-periodic response by the oscillator. 
The qualitative character of  the behaviour is highly 
sensitive to the value of a, and in fig. 4 we demon- 
strate this sensitivity over a range of values of  a. 

A second modification to (2.1) comprises the ad- 
dition of band limited white noise to the basic single 
frequency forcing. Thus, by considering the equation 

2--pQ'l -x2)2-~,zX+X 3 

1 0 0  

=#q sin g2t+a ~ sin cod (2.2) 
i = l  

and taking coie[ 0.2, 0.4 ], we have, for the same val- 
ues of  parameters as in fig. 3b, a mean Poincar6 map 
as indicated in fig. 3c. Note that we have defined the 
mean Poincar6 map to be the set M c R2: 

( M ( x ( t o ) ) )  

={(x l ( t ) ) ,  (x2(t))  I t=2nk/ t2;k=l ,2  .... }, 

where x(t)  are the realisations of the solutions of 
(2.2) for the initial condition X(to), and ( ) in- 
dicates an ensemble average obtained from a num- 
ber of  realisations arising from different o9i [13 ]. 
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Fig. 4. Qualitative change in behaviour of  solutions to (2.1) as a 
varies; results of  computations at intervals of  0.01 between 0 and 
0. i, and at intervals o f  0.001 between 0.04 and 0.05; other pa- 
rameter values as in fig. 3b. ( • ) Chaotic behaviour; ( • )  regular 
behaviour. 
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Fig. 5. Comparison of  chaotic (solid line) and regular (dotted 
line) stochasticity, as described in text, for the interval 100 
KA< t<260 KA. 

When a is increased, we find that the mean Poincar6 
map takes the form of fig. 3d, corresponding to noisy 
periodicity; chaotic behaviour has been replaced by 
regular stochasticity. (Here we use the terms chaotic 
and regular stochasticity in conformity with the def- 
inition that a random process in which the most 
probable value of the maximum Lyapunov exponent 
is positive (non-positive) is called a chaotic (regu- 
lar) stochastic process [ 13 ]. Actual signals may be 
difficult to identify correctly (fig. 5 ). ) 

In summary, we see that the chaotic behaviour of  
eq. (2.1) is readily destroyed by the addition of fur- 
ther weak forcing or coupling, and that the depen- 
dence on "perturbation strength" is extremely 
sensitive. 

3. El  Nifio southern oscillation: 
the Vallis model 

The El Nifio southern oscillation (ENSO) is the 
predominant interannual variability of  a tropical 
ocean-atmosphere system. It results in considerable 
fluctuations in rainfall, sea surface temperature 
(SST) and the intensity of  the trade winds over the 
Pacific Ocean. Its range of variation and essential 
unpredictability impose considerable stress on eco- 
logical systems, and its effects on global weather and 
climate are accepted but poorly understood. 

Many "simple" models have been designed to rep- 
resent ocean-atmosphere interactions which may be 
involved in ENSO dynamics, and the very compre- 
hensive survey [4] admirably summarises present 
thinking. We consider here a very simple two-point 
model of  ENSO proposed by Vallis [8] which is 
based essentially on the East-West temperature ad- 
vection equation and the equation of continuity. The 
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model comprises three ordinary nonlinear equations 
describing the evolution of ocean current and the 
ocean mixed-layer temperatures at Eastern and 
Western stations in the Pacific, which may be written 

du/dt  = B ( TE -- Tw ) / 2 A x -  C ( u -  u*) , 

d T w / d t = u (  T -  TE) I 2 A x - A (  T w -  T*) , 

d T E / d t = u ( T w - T ) / 2 A x - A ( T E - T * )  , (3.1) 

where 7 TM is the constant temperature of deep ocean, 
A, B and C are constants, the term B ( T E - T w ) /  
2Ax+Cu* represents wind-produced stress, - C u  
represents mechanical damping, T* is the tempera- 
ture to which the ocean would relax in the absence 
of motion. The independent variable t is considered 
to vary on timescales of  the ENSO phenomena, i.e., 
2-4 years. Equations (3.1) constitute the basic 
model. 

In our numerical experiments we have used the 
Vallis values, namely A = 1 year-  1, C = 0.25 month-  1, 
B = 2  m z S -z C - t ,  u * = - 0 . 4 5  m s - l ,  T * = 1 2 ° C a n d  
T=0°C.  These values characterise the background 
state and may have an important impact on the 
dynamics. 

Vallis considered both the "free" behaviour of  this 
system, and the effect on it of  an annual forcing, and 
concluded that behaviour reminiscent of  El Nifio was 
possible. Our conjecture here is that the effects of  the 
so-called Madden-Julian oscillations (MJO) of the 
atmosphere, associated with propagating and reflect- 
ing Kelvin waves, are also important in ENSO dy- 
namics, as has been suggested by recent observa- 
tional evidence [14]. For a detailed discussion see 
ref. [15]. 

We thus introduce a forcing in the ocean current 
equation consisting of ( 1 ) a component of  constant 
amplitude frequency to represent the annual forcing 
and (2) a term intended to represent the MJO ef- 
fects in the form of an atmospheric wind stress. We 
have chosen various forms for this forcing varying 
from pure white noise to sharply peaked distribu- 
tions, with randomly chosen frequency (in the 40-  
60 day period range) and phase. 

Some results are shown for the case in which we 
have taken 

100 
u*= --0.45+0.1 cos to1 t+ ~ (~i COS(fOi t+~i)  , 

i=1 

where Ji, coi, 0g are random variables such that 

J~e(0.05, 0 .3 ) ,  2n/co, e(20,  60) days,  

0ie(0,  2n) , 2n/co] =365 days.  

Other parameters have been set at values found by 
Vallis to give a chaotic response. Figure 6 shows the 
variation of u, A T = T E - T w  over a period of 100 
years after 1000 years of integration, and fig. 7 shows 
two shorter intervals. Roughly periodic large anom- 
alies are very prominent in all plots. For comparison 
we include (fig. 8) results for the case of  simple pe- 
riodic forcing (i.e. J i=0  for all i) computed for iden- 
tical parameter  values. 

Gross features are summarised in the spectrum 
(fig. 9), which shows a strong noisy peak corre- 
sponding to a mean period of 3 ½-4 years in contrast 
to the spectrum (fig. 10) for the simply periodically 
forced case. All these features are reminiscent of  E1 
Nifio and are discussed fully elsewhere [I 5]; the 
main point we wish to stress here is the appearance 
of a noisy periodicity in this "quasi-periodically" 
forced system at parameter values where a simple 
forcing gives chaotic behaviour. 

-4 

1000 

years 

100 

~T 

4. 

o, 

-4 

1000 1100 

years 

Fig. 6. Variation ofu  and ATover a period of 100 years as a result 
of integrating eqs. (3.1); values of parameters as specified in text, 
AT= T E -  Tw. 
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Fig. 9. Spectral density distribution for AT over the 100 years of 
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Fig. 10. Spectral density distribution for AT over the 100 years 
of fig. 8. 
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Fig. 8. Variations of u and AT over a period of 100 years as a 
result of  integrating eqs. (3.1) for J~=0; other parameter values 
as specified in text, AT= TE-- Tw. 
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