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Abstract-Nonfeedback methods of controlling the chaotic behaviour of nonlinear oscillators are 
described. First an analytical method of controlling chaos in Duffing’s oscillator which uses the 
classical approximate analysis of nonlinear oscillations is proposed. The second method allows us to 
control behaviour on the chaotic attractor in such a way as to obtain a strange nonchaotic trajectory. 
Finally the application of a ‘dynamical absorber’ to control chaos is shown. It is also shown that the 
presence of quasiperiodic noise in the system can limit the necessary changes of a control parameter. 
The methods presented are compared with the feedback Ott-Grebogi-Yorke method [E. Ott, 
C. Grebogi and Y. A. Yorke, P&W. Rev. Len. 64. 1196 (199(l)]. 

1. INTRODUCTION 

The presence of chaos both in nature and in man-made devices is very common and has 
been extensively demonstrated in the last decade. Quite frequently chaos is a beneficial 
feature as in some chemical or heat and mass transport problems. However, in many other 
situations chaos is an undesirable phenomenon leading to oscillations, irregular operations 
etc. Chaotic behaviour may also be detrimental to the operation of various devices as it 
cannot be predicted in detail. 

The problem of controlling chaos, that is to convert the chaotic behaviour found in a 
physical system to a periodic time dependence or aperiodicity which is predictible has 
recently attracted interest [l-12]. The method of Ott, Grebogi and Yorke [l, 21 (OGY) has 
the unique feature that it enables one to select a predetermined time-periodic behaviour by 
making only small time-dependent perturbations. They show that permanent chaos can 
always be supressed by stabilizing one of many periodic orbits embedded in the chaotic 
attractor. The idea is to start with any initial condition, wait until the trajectory falls into a 
target region around the desired periodic orbit and then apply feedback control. The 
efficiency of this technique has been demonstrated first by Ditto et al. [3] in a periodically 
forced physical system, converting its chaotic behaviour into period-one and period-two 
orbits. The applications of the OGY method to stabilized higher periodic orbits in a chaotic 
diode resonator have been demonstrated by Hunt [4]. Another interesting application of 
this method is the generation of desired aperiodic orbit by Mehta and Henderson [5] and 
controlled transient chaos by Tel [6]. A modification of this method to control chaos using 
delay coordinates has been presented by Nitsche and Dressler [7]. Another related method 
is described by Shinbrot et al. [S]. It employs chaos to direct trajectories to target. Also, 
laminar flow has been produced in previously unstable thermal convection loops by 
a thermostat-type feedback mechanism in experiments by Singer et al. [9]. An attempt 
to generalize the OGY method to higher-dimensional systems is presented by Romeiras 
et al. [lo]. 

Beside the feedback methods described above there is a possibility to stabilize periodic 
orbits by nonfeedback methods [ 11-161. Some preliminary numerical experiments are 
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presented in Kapitaniak [ll] where stabilization of periodic orbits was achieved by adding 
an additional deterministic or random perturbation to a chaotic system. A nonfeedback 
procedure has been shown to be feasible for the periodically driven pendulum [14] and 
Duffing equation [ 151. In this paper we discuss recently developed nonfeedback methods 
which are applicable to nonlinear oscillators of the Duffing type. In Section 2 we present 
an approximate analytical method of converting the chaotic behaviour of Duffing’s 
oscillator into the appropriate periodic trajectory. This method is considered in noise free 
and noisy systems. In Section 3 we show how to control chaos to generate a strange 
nonchaotic trajectory. The possibility of applying a method equivalent to dynamical 
absorbtion to control chaos is discussed in Section 4. Finally Section 5 compares the 
described nonfeedback methods with the feedback OGY method. 

2. ANALYTICAL METHOD OF CONTROLLING DUFFING’S EQUATION 

In this section we present an analytical method of controlling the chaotic behaviour of 
Duffing’s equation: 

.lr + af + hx + cx3 = B,, + B,cosQrr, (1) 

where a, b, c, BO, B, and Q are constant. 
It is well known that equation (1) exhibits chaotic behaviour for certain values of the 

parameters [17-201. In many cases it can be shown that chaotic behaviour is obtained 
through a period doubling bifurcation [l&20]. Recently, there have been some attempts to 
create an analytical criterion which allows us to estimate the chaotic domain in the 
parameter space [20,21]. Boundaries of the chaotic zone have been obtained using the 
classical approximation theory of nonlinear oscillations, by examining approximate periodic 
solutions and studying particular types of higher order instabilities which precede the 
destruction of a periodic attractor in the variational Hill’s type equation [22]. Now we 
adopt a similar procedure, the harmonic balance method. to control chaotic behaviour. 

First consider the first approximate solution in the form: 

X(f) = c,, + c, cos (Mt + l/J). (2) 

where C,,, C, and li, are constants. Substituting equation (2) into equation (1) it is possible 
to determine these constants [20,22]. To study the stability of the solution (2) a small 
variational term 6x(t) is added to equation (2) as: 

r(t) = C,, + C,cos(Qt + 7p) + c‘Px(t). (3) 

After some algebraic manipulations, the linearized equation with periodic coefficients for 
&(t) is obtained 

62 + a& + &[A,, + A,cos3 + A2cos2S] = 0. (4) 

where: A,, = 3Ci + (3/2)Cf, )\, = 6C,,c’,, /I, = (3/2)Cf. E = Qt + Z+I. In the derivation of 
equation (4), for simplicity, it was assumed without loss of generality that h = 0. As we 
have a parametric term of frequency Q - ;1, cos E:, the lowest order unstable region is that 
which occurs close to Q/2 -%‘A,, and at its boundary we have the solution: 

8.x = b,.,cos((Q/2)t + ,q’). (5) 

To determine the boundaries of the unstable region we insert equation (5) into equation 
(4). and the conditions of nonzero solution for h, ‘7 lead us to the following criterion to be 

satisfied at the boundary: 
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(A0 - Q2/4)2 + a2Q2/4 - A:/4 = 0. (6) 

From equation (6) one obtains the interval (Qi , (2) S2$2’) within which period-two solutions 
exist. Further analysis shows that at I& we have a stable period-doubling bifurcation for 
decreasing Q and at &i an unstable period-doubling bifurcation for increasing Q [20]. In 
this interval we can consider the period-two solution of the form: 

x(t) = A, + A1,Z~~~((Q/2)t + n) + A,cosQtt, (7) 

where AO, A1i2, A, and q are constants to be determined. Again to study the stability of 
the period-two solution we have to consider a small variational term 6x(t) added to 
equation (7). The linearized equation for 6x(t) has the following form: 

6X + a& + c?.x[A~~) + Ll~2c~~~(Q/2)t + hl,2ssin(Q/2)t + &,,cos((3Q/2)t + 7) 

+ A(:,‘cosQr + A(:!sinQt + A$2’cos2Qf] = 0, (8) 

where: 

Lb2’ = 3(A; + OSA& + OSA;), Aliz, = 3Ali2(2Ao + A,)cosq, 
k = 3A12(Al - 2Ao)sinq, h,,, = 3A1A112, ilit) = 6A,A, + 
#= -(3b)A2 1,2r sin 271, Ai2’ = (3/2)A:. 

(3/2)A$2c~~~2q, 

The form of equation (8) enables us to find the range of existence of a period-four 
solution, represented by: 

6x = b,,,cos((Q/4)t + q) + b,cos((3Q/4)t + 11). (9) 

After inserting equation (9) into equation (8) the condition of having nonzero solutions for 
b1i4 and b3i4 gives us the following set of nonlinear algebraic equations for Q, cos rl and 
sin 11 to be satisfied for existence: 

(h,,2s + A’,:‘) - 0.5(A1,2c - @)(-aQ/2 + ltlj2s - Aji2 sin r) = 0, 

((9/8)Q2 + 0.5& + A,,, cos r) - 0.5(h-ilzC + A’,2,‘)(@ + QzC) = 0, 

(-(3/2)aQ - L3i2 sin r]) - 0.5(A,,2C + AC)<@ + j11j2r) = 0. (10) 

Solving equation (10) by a numerical procedure it is possible to obtain Q(P) and Qy), the 
frequencies of stable and unstable period-four bifurcations. 

Now we assume that the Feigenbaum model [23] of period doubling is valid for our 
system i.e.: 

(11) 

where 6 = 4.669. . . is the universal Feigenbaum constant and II = 1,2, . . . . 
It has been proved that period-doubling bifurcations in one-dimensional maps with a 

single hump fulfil the Feigenbaum model, but there are a number of examples where this 
model can be taken as good approximation to the real phenomena in higher-dimensional 
dissipative systems [24,25]. 

To obtain approximate values of the limits of period-doubling bifurcations (accumulation 
points) we replaced the limit in equation (11) by an equality. This allows us to indicate 

AQ’” - Q:;, - L’;;,-‘. 1,2 - (12) 

Now it is easy to show that ASZT:,, AC?::;‘, . . . forms an infinite geometrical series with a 
ratio l/6. With both stable and unstable period-two and period-four boundaries using the 
approximation described above one obtains: 
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sZ(,=) = Q’l” + AQ,/(l - l/h). 

Qi”’ = Q$‘) - A!&/(1 - l/6), 

where: AQ2, = Q’,;” - Qf’, AL& = a?) - Q$“‘. 

The domain where chaotic behaviour can occur is proposed to lie between the limits of 
unstable and stable period-doubling cascades, in the interval (Qi”‘. ai”‘) and of course to 
expect chaos one must have: 

Q\“’ < Q;2!“’ 
_ 

More details about this method can be found in [ll, 211. Beside estimating the chaotic 
region in parameter space this approach evaluates analytically the approximate unstable 
orbits or at least regions in parameter space where they exist. The above analysis can be 
used to control equation (1) by changing parameter Q. It should be noted here that the 
frequency Q is the parameter which can be easily changed in real experimental systems 
modelled by equation (1). From Fig. 1 one can find that changing CC? by Q* < 0.12 one can 
obtain different types of periodic behaviour; from period-one to theoretically period-2” 
(n = 1,2, . .). Periodic orbits of higher order (n > 4) are difficult to obtain as the Q 
intervals of the existence of these solutions are very small. Examples of controlling a few of 
the periodic orbits are shown in Fig. 2. We plot coordinate x of the Poincare map as a 
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Fig, 1. Parameters of period-one and period-two approximate solutions (2) and (7). and the W Intervals of 
existence of period-four and period-eight solutions: rr = 0.05, h = 0, c = 1. Bo = 0.03. Bi = II.16 The solid line 

indicates stahle solutions while the broken line indicates unstable solutions. 
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Fig. 2. Successive control of period-one, -two, -four, -eight orbits. The arrows indicate the 
a = 0.05, b = 0, c = 1, B,, = 0.03. B, = 0.16, 51 = 0.97. 

times of switching: 

function of discrete time ; = 2nn/(S2 + Q”), n = 1, 2, . . . The frequency perturbations 
were programmed to successively control four different periodic orbits. The times at which 
we switched the control from stabilizing one periodic orbit to stabilize another are labelled 
by arrows in Fig. 2. 

Recently it has been shown that the small additive quasiperiodic noise of the form: 

h(t) = &,COS(V& + #j), (13) 
I=1 

where Ai << Bo,l are constants, Y; and Qi are time independent random variables, shifts the 
period doubling bifurcation point decreasing the zone of existence of each period-2” 

solution and can even eliminate chaos [ll, 161. 
This phenomenon shows that we can reduce the range in which the control parameter is 

allowed to vary by simultaneously adding noise into the system i.e. 

f + ai + bx + cx 3 = B, + B~cos((O + 52*)t) + ~~Aicos(v;l + pi). (14) 

Quasiperiodic noise given by equation (13) is an approximation of the realization of the 
band-limited white noise stochastic process with zero mean and a spectral density: 

s(J4 = 
i 

&Llv,,X - Yni,) v E Lvmin9 vmv,,7.1 () y 4 tYn,,> %axl7 
where s is the intensity of noise and [Vmin, VJ is the interval of considered frequencies 
[ll, 161 and can be easily simulated experimentally. 

An example of this type of control is shown in Fig. 3. In this case as an effect of control 
we obtain solutions of appropriate period perturbed by noise (13). 

3. GENERATION OF STRANGE NONCHAOTIC TRAJECTORY 

A nonfeedback technique which allows us to generate a strange nonchaotic trajectory by 
a small change of system parameters is described in this section. Our method is applicable 
to the systems whose behaviour depends on a control parameter c in such a way that they 
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X 

A 

Fig. 3. Successive control of period-one, -two, -four, -eight orbits with noise added to the system. The arrows 
indicate the times of switching: a = 0.05, b = 0, c = 1, Bo = 0.03. B, = 0.16, C2 = 0.97, A, = 0.004, Vmin = 0.9, 

Y max = 1.1, N = 200. 

have a chaotic attractor for one value of c, say c1 and a strange repeller together with a 
periodic attractor for the other value of c-c2. Systems with a large strange repeller exhibit 

transient chaos [26,27]. Trajectories started from randomly chosen initial points then 
approach the attractor with probability one. Before reaching it, however, they might come 
close to the strange repeller and stay in its vicinity for a shorter or longer time. Long lived 
chaotic transients are often present around crisis configurations [26], at parameter values 
just beyond the disappearance of the chaotic attractor. It is worth mentioning that systems 
with fractal basin boundaries [28] are also accompanied by transient chaos since such 
boundaries are, in general the stable manifolds of a chaotic repeller. Computation of 
transient Lyapunov exponents for the systems with chaotic repellers often shows such a 
property that their values become nonpositive far before the transient died i.e. before 
trajectory reaches the attractor [29,30]. 

The main idea of our method is described in Fig. 4. Let’s consider two trajectories which 
start from nearby initial conditions A’ and A” which lie on or close to a strange chaotic 
attractor. For to < t < f, these trajectories represent evolution of the system for a value of 
control parameter c = c1 and for tl < t C= t3 the evolution is shown for control parameter 

‘t, “2 ‘3 

Fig. 4. Behaviour of nearby trajectories. 
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c = c2. In the first time interval we observe exponential divergence of trajectories described 
by a positive Lyapunov exponent-_(t) > 0. At time t = tl we are changing the value of 

the control parameter from cl to c2. For a new value of control parameter our system has a 
strange repeller and we observe first a further divergence of trajectories and a positive 
transient Lyapunov exponent A(t) > 0 for tl < 1 < t2. At time t2 the transient Lyapunov 
exponent changes sign from positive to negative and for tz < t < t3 we observe a 
convergence of trajectories. At time t3 we are changing the value of the control parameter 
to c1 again, etc. If t3 is chosen in such a way that the period of time t3-t2 is not sufficient 
for a system to reach a periodic attractor and 

I’k(t)dt = 1,1’ A(t)dt, (15) 

then we do not observe divergence of trajectories in time. As a part of a trajectory evolves 
on the strange chaotic attractor the switches between cl and c2 will take place in different 
points of phase space so the trajectory is aperiodic (not t3-periodic). 

As an example of our method let us consider: 

x + ai - (1 + ccos cot)x + bX3 = 0, (16) 

where a, b, c and w are constant. Examples of this equation are found in many 
applications of mechanics, particularly in problems of the dynamic stability of elastic 
systems [31,32]. 

Equation (16) has three Lyapunov exponents: one of them is always zero, one is always 
negative and the third one can change its sign with the change of control parameter c. The 
value of this Lyapunov exponent is responsible for exponential divergence or convergence 
of nearby trajectories and in the rest of this paper we will investigate only the value of this 
Lyapunov exponent-_. If h. is negative we have the limit cycle attractor, if i\. is positive we 
have a strange chaotic attractor and if il = 0 a torus is an attractor. 

The behaviour of equation (2) has been investigated numerically in [30], where equation 
(2) has been integrated by the fourth-order Runge-Kutta method with the integration step 
being T1/200, where T, = 21~1~ and Lyapunov exponents have been obtained using the 
method of Wolf et al. [33]. The plot of A vs control parameter c is shown in Fig. 5 as c 
changes from 0 to 0.5. If c is small, A is negative, so equation (2) does not show sensitive 
dependence on the initial conditions. When c is increasing up to about 0.348, h changes 
suddenly from negative to positive values and the behaviour of equation (2) is chaotic. In 
the interval c E (0.256,0.348) we observe long transient aperiodic trajectories without 
sensitive dependence on the initial condition i.e. the transient Lyapunov exponent A(t) 
decreases and turns negative far before the transients have died. The lifetime of the 
observed transient is relatively long (lo-10 T,) in comparison to these times. The lifetime 
of transient chaos (when transient Lyapunov exponent is positive) is much shorter (about 
10 T,). 

In our control procedure we took one value of c for which the behaviour of the system is 
chaotic and one value of c for which equation (2) has the above mentioned transient 

behaviour. In numerical investigations c 1 = 0.35 and c2 = 0.34 have been taken and we 
consider the behaviour of the system: 

X + ai - (1 + c(t) cos ot)x + bx3 = 0, (17) 

where c(t) = cl for t,, < t -=c tl and c(t) = c3 for tl < t < t3. Generally T, and T2 = t3 are 
incommensurate so equation (3) has four-dimensional phase-space (x, -li-, cot, (2n/t3) t) and 
a strange nonchaotic attractor may occur. In Fig. 6 we showed the plot of transient 
Lyapunov exponent A(t) vs t. As a function c(t) is discontinuous in numerical calculation 
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Fig. 5. Lyapunov exponent h for equation (2) vs control parameter C. 

Fig. 6. Transient Lyapunov exponent j.(r) for equation (3) vs time. 

we took its Fourier series approximation with 100 components. In this figure the regions of 
divergence and convergence of nearby trajectories are visible. As the value of Lyapunov 
exponent averaged over time T2 is negative and close to -0.001 we do not observe 
exponential divergence of trajectories in time. This result shows that applying our control 
procedure we manage to build an aperiodic trajectory which is predictable in the sense that 
nearby trajectories do not diverge exponentially, this is shown in Fig. 7. Figure 7 presents 
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Fig. 7. Distance between nearby trajectories of equation (3) vs time. 

the distance: x’(t + nT,) - ~“(t + nT,); where II = 1, 2, . . ., x’ is a trajectory for initial 
conditions x(0) = 0.1, a(O) = 0 and x” is a trajectory for x(0) = 0.101, i(O) = 0. 

In this method to obtain a desired aperiodic orbit we took advantage of the fact that 
generally the addition of new excitations with incommensurate frequencies drives a 
dynamical system closer and closer to the ergodic state. This phenomenon has been 
observed in a number of numerical experiments [ll, 34,351 and recently El Naschie 
explained it analytically using the properties of multi-dimensional Cantor sets [36, 371. 

4. CONTROL VIA DYNAMICAL ABSORBER 

In the methods described in previous sections the appropriate control has been achieved 
by adding perturbation into a chaotic system or by small change of one of the parameters. 
In this section we describe a different method in which the control effect is obtained by 
joining the chaotic system with another system. The idea of this method is similar to the 
work of the so-called dynamical vibration absorber. A dynamical vibration absorber has 
one degree of freedom, usually a mass on the spring, which is added to the main system 
(see Fig. 8) to shift a resonance zone. The parameters of the absorber are small in 
comparison to the parameters of the main system so they can be easily added to the 
existing systems without change to its construction. 

To explain the role of dynamical absorbers in the procedure of controlling chaotic 
behaviour let us again consider Duffing’s oscillator (l), this time coupled with an additional 
linear system: 

X + ai + bx + cx3 + d(x - y) = BcosQr, 
y + e(y - x) = 0, 

(18) 

where a, b, c, d, e, B and Sz are constant. The constant e is the characteristic parameter 
for the absorber and we take it here as a control parameter. Parameters of equation (18) 
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Fig. 8. The dynamical absorber 

are related to those of Fig. 8 in the following way: a = c/mQ, b = k/mQ’, c = k,./rnQ’, 
d = k,/rnQ’, e = k,/m,Q2, B = F/mQ’. 

The controlling effect of a dynamical absorber can be seen in Fig. 9 where we show a 
plot describing a different periodic behaviour vs the absorber characteristic parameter e. 

5. CONCLUSIONS 

Nonfeedback methods of controlling chaos presented in this paper can be easily used for 
controlling the dynamical behaviour of nonlinear oscillators. 

f 

e 

3 2”T (ml) 

2 

i 
T 

1 4----- 
Fig. 9. Controlling effect of dynamical absorber; a = 0.168, b = 0.5, c = 0.5, E = 0.21, Q = 1 
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The analytical technique of controlling chaos in Duffing’s equation presented in Section 1 
is based on: 

(a) the approximate period-one, -two and -four solutions and their stability limits com- 
puted by the harmonic-balance method, 

(b) Feigenbaum’s universal constant for the asymptotic ratio of the stability intervals of the 
2” and 2”+l period solutions. 

It can be applied to the class of nonlinear oscillators which the harmonic-balance method 
analysis shows the possibility of period-doubling bifurcation (A, f 0 in equation (4)). 
Generally this is, of course, a very small category of problems, but they have a great 
number of applications. 

The method described in Section 3 shows how to convert a chaotic trajectory into an 
aperiodic trajectory which does not show sensitive dependence on initial conditions. This 
control although it does not change a great deal the features of a single trajectory (for 
example phase plot, power spectum) it does improve predictibility. 

An interesting method of controlling chaos is the application of an additional system 
which connected with a main system can convert its behaviour from a chaotic to a periodic 
one. This method can be easily applied to the experimental systems, especially mechanical 
ones, where the similar method (dynamical absorber) is well known as a way to shift a 
resonance zone. 

The methods presented are less general than the feedback method of Ott-Grebogi- 
Yorke. They can be applied only to systems which displayed specific a priori known 
behaviour. This requires the knowledge of equations of motion. On the other hand, to 
apply this method we do not have to follow the trajectory. The control procedures can be 
applied at any time and we can switch from one periodic orbit to another without returning 
back to the chaotic behaviour, although after each switch transient chaos is observed. The 
life time r of this transient chaos strongly depends on initial conditions and for example we 
observed r < 4OO(II/(Q + Q*) for a method described in Section 1. In a nonfeedback 
method we do not have to wait until the trajectory is close to an appropriate unstable orbit. 
In some cases this time can be quite long. 

An interesting feature of nonfeedback methods is the possibility of using additional noise 
to reduce the necessary range of control parameter variation. This is important as our 
method requires larger perturbations of the control parameter than the method of [l, 21. 

Generally, nonfeedback methods can be useful tools of controlling chaos especially in 
man designed devices where the dynamics are known despite the fact that at first sight they 
seem to be based on the ‘brutal’ change of the system parameters or even configuration. 
Until now the main reason for investigating chaotic behaviour in practical (mainly 
engineering) systems was to estimate the zone in parameter space where chaos can be 
found. This estimation was necessary to build a real system so that it is operating as far as 
possible from the chaotic zone. Nonfeedback methods described in this paper allow 
another approach to build a system as a chaotic one and to obtain an appropriate response 
by controlling it. The application of the described methods does not require a series of 
changes in the system and allow for easy transition from one type of response to another. 
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