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1. INTRODUCTION

The objective of the investigations reported was two-fold: firstly, to throw light on the
rather poorly understood refationship between frictional force and relative velocity in dry
sliding contact between solids; and secondly, to generate data from a real mechanical non-
linear system forced quasiperiodically, and to use methods of analysis of aperiodic time
series to look for regions of existence of chaotic and non-chaotic strange attractors for the
system.

Earlier work on quasiperiodically forced oscillators [1-4] had led us to expect robust
existence of the latter in some regions of parameter space. The results were somewhat
unexpected, and led us to take a novel view of the importance to the behaviour of the
friction force of motion normal to the mean plane of contact.

In section 2 we discuss the phenomenon of dry friction, describe the experimental
configuration and present some experimental results. In section 3 we discuss the analysis
of the experimental data and, finally, in section 4 we interpret these results in terms of a
model for the observed chaotic behaviour.

2. EXPERIMENTS

The friction properties of sliding bodies are important in a large number of engineering
applications. However, no universal mathematical model has yet been found which satis-
factorily describes this physical phenomenon, The nature of the dynamic friction forces
developed between objects in contact is extremely complicated and is affected by many
factors such as the frequency of the contact, the response of the interface to normal forces,
the roughness of the surfaces, the wear, the lubrication, the type of interface and others.
Dynamic friction is not a simple phenomenon but comprises a set of factors different in
nature and behaviour, which cannot be fully described by a simple analytical equation.

Most experimental studies [5-9] show that a dynamical friction force acts in the same
direction as the relative velocity of the bodies in contact but in the opposite sense, generally
according to the relationship:

F~sign (V,), 4}

where F represents the friction force and V, the relative velocity.

f Permanent address: Division of Control and Dynamics, Technical University of Lodz, Stefanowskiego 1/15,
90-924 Lodz, Poland.
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Figure |. The experimental rig.

The friction force has been found to be an irreversible function of the sliding velocity
in all cases in that the accelerating and decelerating branches of the friction-velocity curves
are distinct in a cycle of motion. For different pairs of metals in contact, the same lubrica-
tion conditions may produce curves very distinct in shape, and even for the same combina-
tion of metals the shape, slope and separation between the two branches is very much
dependent on both the dynamic properties of the test rig and the driving velocity. As a
result the experimental characteristics are not defined uniquely by the nature of contacting
bodies, but are functions of all the dynamical properties of the system.

Experimental measurernents of the dry friction force between steel and brass in contact
are presented, as obtained by using the equipment shown in Figure 1. The test rig provides
additional facilities for dry friction tests compared with those used in previous experiments,
where in the latter the velocity of one of the contacting bodies was constant. In this test
rig, all the bodies in contact are oscillating. Two simple subsystems, each with its own
driving force, P;cos £2,t, are coupled through the frictional contact between brass blocks
placed in the bottom subsystem and held by springs in permanent contact with the steel
shaft of the top subsystem. Friction forces were measured by using a piezo-electric force
transducer connected to a charge ampiifier and a 12-bit data acquisition system in a
microcomputer. Simultaneously, other system variables, for example velocities and dis-
placements of both subsystems, were measured.

In addition to the forced vertical oscillations of the masses | and 2, it was found that the
masses 3 oscillate horizontally. These horizontal oscillations are caused by the roughness of
the sliding surfaces of the masses 1 and 3. It is well known that even the most polished
metallic surfaces are not perfectly flat. Under magnification, one observes that these sur-
faces have undulations that form hills and valleys the dimensicns of which are large in
comparison with molecular dimensions (see Figure 2). This horizontal degree of freedom,
although very smail, nevertheless appears to impose its signature on the overall dynamics
of the system.

M NN N

Figure 2. A typical profile of mild steel specimen after surface grinding and polishing,
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A full description and discussion of the experimental technique and results will appear
elsewhere [10, 11]. Here, in Figures 3(a-c), we reproduce some typical examples of friction
force vs. relative velocity dependence in a quasiperiodically excited two-degree-of-freedom
system. In Figure 3(a) the dependence is approximately described by equation (1). This
case was obtained for values of £2, and €2, which were close together (2, =10-51 Hz, £2,=
14-61 Hz). In Figures 3(b) and 3(c), cases in which the value 2, is substantially larger
than £, (£2,=10-51 Hz, with £,=30-83 Hz in Figure 3(b) and 35-03 Hz in Figure 3(c)),
the friction—velocity relation seems to be completely different from that of equation (1);
force-velocity changes are now highly unpredictable and complicated.

3. ANALYSIS AND INTERPRETATION OF THE DATA

The behaviour displayed in Figures 3(b) and (c) is clearly aperiodic, and a first objective
of analysis is {o determine the character of the attractor and behaviour of trajectories near
it. Many dissipative dynamical systems exhibit strange behaviour, and two classes of
strange attractor seem to be characteristic of quasiperiodically forced systems [1-4, 12, 13]:
(a) a strange chaotic attractor—one which is geometrically, “‘strange”, i.e., the attractor is
neither a finite set of points nor is it piecewise differentiable, and for which typical orbits
have positive Lyapunov exponents, implying exponential divergence with time of nearby
orbits; (b) a strange non-chaotic attractor—one which is also geometrically “strange™ and
has a fractal dimension like a typical chaotic attractor, but for which typical nearby orbits
do not diverge exponentially with time.

Since both types of strange attractor are geometrically similar, some qualitative measure,
such as the value of Lyapunov exponents and of the information dimension connected
with them, is necessary to distinguish these classes,

In earlier work [12, 13] numerical experiments were employed to show that it is impos-
sible to distinguish between strange chaotic and non-chaotic attractors on the basis of
Lyapunov exponents estimated from time series. However, it was indicated [13, 14] that
the information dimension of the attractor might be used to make the distinction.

In what follows we develop this idea further by using the results of section 2 which show
complicated aperiodic behaviour. Our approach follows that of Grassberger and Procaccia
[15]. We constructed an m-component “‘state” vector X, from a time series of the friction
force F(1) as

Xi={Fi(t), Bty +71), ..., Fti +(m—1)1},

where 7 is an appropriate time delay (of the order of characteristic physical time scales)
and used the correlation integral defined for N vectors distributed in an m-dimensional
space as a function of the distance r:

N N
Cr,m)= lim (I/N%) ¥ Y O(r—|xi—x}),
N—owm i=1 j=1
where @ is the Heaviside step function. If the number of points is large enough, as assumed
above, this distribution will obey a power-law scaling with r for small r, C(r, m) ~r*, where
v is the correlation dimension. As we increase m, the correlation dimension is seen to
converge to its true value,

The results of this procedure applied to the data of Figure 3(b) are shown in Figure 4.
We find that the correlation dimension converges to a value greater than six for the
embedding dimension m=8, and appears not to change for further increase of m. The
data of Figure 3(c) give results which are very similar: the value of v at m=38 differs by
only 0-1.
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Figure 3. Examples of friction force-relative velocity diagrams. {a) £2,=10-51 Hz, £,=14-01 Hz; (b} 2, =
10-51 Hz, £2,=30-83 Hz; (c) £2,=10-51 Hz, £2,=135-03 Hz.
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Figure 4. Correlation dimension vs. embedding dimension plot. ——, Friction force time series of Figure
2(b}; - - - -, friction force time series of Figure 2(c).

4. A MODEL FOR THE OBSERVED BEHAVIOUR
The equations for the vertical motion of the two oscillators take the form

(m3 +m|))'é| +f(x;, X.i, N)+k1X|=P: cos Q]f, ?nz)z'g‘l"‘f(x,', JE',', N)+k2X2:P2 cOs ta,
(2)

where N is the total normal force acting at the sliding contacts.

If we assume N to be constant, flow defined by his equation occupies a six-dimensional
phase space and can be described by six one-dimensional Lyapunov exponents. Two of
them, connected with the forcing, are explicitly zero. Of the other four, at least two must
be negative to reflect the dissipative nature of the system. Hence the Lyapunov dimension,
given by

7
dL=f+ Z ;‘Li/|3~j+t|, (3)

i=1

where j is the largest number of Lyapunov exponents for which the sum Z,j-=| A; is non-
negative, is at most four if there are no positive Lyapunov exponents. A value of d; greater
than four indicates that at least one Lyapunov exponent must be positive and that the
system is chaotic,

Kaplan and Yorke [16]} have suggested the equality of the Lyapunov dimension and the
information dimension, d;, and it has been shown [15] that the correlation dimension v
and information dimension d; satisfy

v Sdf- (4)

Hence the experimental data suggest that, since v > 6 and hence d;> 6, the model represen-
ted by equations (2) is inadequate to describe the dynamics, since its phase space dimension
is too low to produce such a value for 4;.

We propose that the reason for the inadequacy is the assumption in equations (2) of
constant N. A more adequate model must allow for variations in & associated with small
irregularities in the surfaces in contact and motion normal to the plane of contact. We
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propose that N can vary and is connected to the system (2) through an equation of the
form

msj3 + k3y;— N=constant, (5)

governing the dynamics of this normal motion, where ys(x,, x;) is the local departure of
the separation of the brass slides from its mean value as a result of surface roughness.

This equation, added to equations (3), produces an eight-dimensional system. An
embedding dimension of eight appears to give a good approximation for the value of v
and suggests that consideration of the degree of freedom normal to the direction of slipping
is important in modelling the friction force. Calculations of v for other values of €2, and
£, support the converged value closed to 6-70 for an embedding dimension of eight.

Finally, equations (2) and (5) have eight one-dimensional Lyapunov exponents. The
greatest possible Lyapunov dimension for the case in which there is no positive Lyapunov
exponent is six. Hence our experimental data suggest that the behaviour of the system is
chaotic.

5. SUMMARY

(1) The behaviour of this system in which two linear oscillators are connected through
a dry friction force is undoubtedly chaotic, as the value of d;> 6.

(2) The inclusion of a degree of freedom normal to the plane of slipping is important
in modelling the experimental consequences of dry friction.
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