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The presence of chaos both in nature and in man-made devices is very common and has
been extensively demonstrated in the past decade. Very occasionally chaos is a beneficial
feature, as in some chemical or heat and mass transport problems. However, in many
other situations chaos is an undesirable phenomenon leading to oscillations, irreguiar
operations, etc. Also, chaotic behaviour may be detrimental to the operation of various
devices, as it cannot be predicted in detail,

Recently, Ott, Grebogi and Yorke [I, 2] showed that for a chaotic attractor one can
obtain a desired attracting time-periodic motion by making only small time-dependent
perturbations in an accessible system parameter. This method of controlling chaos is based
on the observation that a chaotic attractor typically has embedded within it an infinite
number of unstable periodic orbits. First, some of these unstable periodic orbits are deter-
mined, and then one which yields improved system performance is stabilized by adding
small time-dependent perturbations to one of the system parameters. This method is very
general and can be used for both low- and high-dimensional systems [3). Recently, it was
successfully applied to controlling an experimental chaotic system [4]. In addition to this
method, the problem of controlling chaos has been mentioned in references [5, 6).

In what follows a different method is presented for controlling the chaotic behaviour of
Duffing’s equation,

E+ax+bx+cx’=By+ B cosf2t, )

where aq, b, ¢, By, B, and £ are constants.

It is well known that equation (1) shows chaotic behaviour for certain values of the
parameters {7-10]. In many cases it can be shown that chaotic behaviour is obtained via
a period-doubling bifurcation [8-10]. Recently, there have been some attempts to create
an analytical criterion which allows one to estimate the chaotic domain in the parameter
space [9-14]. Boundaries of the chaotic zone have been obtained by using the classical
approximate theory of non-linear oscillations, in particular by examining approximate
periodic solutions and studying particular types of higher order instabilities which precede
the destruction of a periodic attractor in the variational Hill’s type equation [15]. Here a
similar procedure (based on the harmonic balance method) for controlling chaotic
behaviour is to be presented. '

First consider the first approximate solution in the form

x(t)= CQ""" Cl cOs (Qt+g|), (2)

where Cy, C) and { are constants. By substituting equation (2) into equation (1) it is
possible to determine these constants {10-12). To study the stability of the solution (2) a
small variational term &x(r) is added to equation (2), to give

x(1) = Co+ C) cos (Q1+ ) + 8x(2). 3)
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After some algebraic manipulations, a linearized equation with periodic coefficients for
dx(f) is obtained,

dxX—adx+dx[A+ A cos @+ 1, cos20]1=0, (4)

where 1o=3CZ+(3/2)CE, M =6CyC1, 22=(3/2)C} and @ =Q¢+¢,. In the derivation of
equation (4), for simplicity, it was assumed without loss of generality that 5=0. As one
has a parametric term of frequency £2 — A, cos @, the lowest order unstable region is that
which occurs close to £2/2%./A¢, and at its boundary one has the solution

8x=by,; cos ((£2/2)t+ p). (5)

To determine the boundaries of the unstable region one inserts equation (5) into equation
{4), and the conditions for a non-zero solution for b, leads to the following criterion to
be satisfied at the boundary:

(Ao— 22 /4 +d* /14— Al /4=0. (6)

From equation (6) one obtains the interval (€2, 242} within which period-two solutions
exist. Further analysis shows that at {2, one has a stable period-doubling bifurcation for
decreasing €2 and at £2, an unstable period-doubling bifurcation for increasing €2 [12]. In
this interval one can consider the period-two solution of the form

x{()=Aogt+ A pcos ((2/2)1+ p)+ A, cos 24, (7

where A, A2, A, and p are constants to be determined. Again, to study the stability of
the period-two solution one has to consider a small variational term &x(¢) added to
equation (7). The linearized equation for dx(¢) then has the form

8%+ adx+ Ex[ASY + Ay jpe cos (Q/2)t+ Ay 2 8in (£2/2)t + A3 cos ((382/2)t + p)
+A{2 cos Qr+ A sin + A cos 2Q21]=0, (8
where
MO =3(A5+0-547,+0:54]),  Line=34,,2(24¢+ 4)) cos p,
Avjas=3A4, (A4, —24,) sin p, Aa=3A41412, AV =644, + (3/2)_»4,/2c cos 2p,
AP =—(3/2)A3,, sin 2p, P=(3/243.

The form of equation (8) enables one to find the range of existence of a period-four
solution, represented by

8x=by,4 cos ((£2/4)t+ p) + by 4 cos ((382/4)1+ p). (9)

After inserting equation (9) into equation (8) the condition for non-zero solutions for b, 4
and by, yields the following set of non-linear algebraic equations for €2, cos ¢ and sin ¢
to be satisfied for the solutions existence:

(111/25"' /1(2)) 0 5(2..,:26 (2))( aQ/Z + /1] 125 3,3_/2 sin p) 0
((9/8)82%+ 0-5482 + 43,2 cos p) — 0-5( A oc + AIPWAD + 41 ,2:) =0,
(—(3/2)af2 — 23 5in p) — 0-5( A1 o+ AWAZD + 4y j20) =0. (10)

By solving equations (10) by a numerical procedure it is possible to obtain £2{* and
059, the frequencies of the stable and unstable period-four bifurcations.
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Now it is assumed that the Feigenbaum model [16] of period doubling is valid for the
system: i.e.,

@3 -25 N /QE"-0%) > 8, (i
where § =4-669. . . is the universal Feigenbaum constant and n=1, 2, ... Although it has
not been proved that all period-doubling bifurcations occur via the Feigenbaum model,
there are examples where this model can be taken as a good approximation to the real
phenomena [17, 18].

To obtain approximate values of the limits of period-doubling bifurcations (accumula-
tion points) one can replace the limit in expression (11) by an equality. After that, one
can define 4023 =023~ 227", Then it is easy to show that AR{3’, AQ5F"", ... form
infinite geometrical series with a ratio 1/6. With both stable and unstable period-two and
period-four boundaries, by using this approximation, one obtains

QP =0P+ AR /(1-1/8), 5=~ A0,/(1-1/8),

where AQ,=0Q® - Q® and AQ2,=Qf - Q.

The domain in which chaotic behaviour can occur is supposed to be between the limits
of unstable and stable period-doubling cascades, in the interval (2{=, 2{), and of
course to expect chaos one must have

Qliw)<gz(co)_ (12)

More details about this method can be found in references [13, 14]. With this approach,
besides estimating the chaotic regions in parameter space, one can evaluate analytically
the approximate unstable orbits, or at least the regions in parameter space where they
exist. The analysis can be used to control equation (1) by changing the parameter £2 in
the range Q¢[2— Q% 2+ 0Q%]. It should be noted here that the frequency L2 is the
parameter which can be very easily changed in real experimental systems modelled by
equation (1). From Figure 1 one can find that for £2* <0-12 one can obtain different types
of periodic behaviour; from period-one to theoretically period-2" (n=1,2, .. .). Higher
order periodic orbits with n >4 are difficult to obtain, as the € intervals of the existence
of these solutions are very small. An example of the control of a few of the periodic orbits
is shown in Figure 2. The co-ordinate x of the Poincaré map is plotted as a function of
the discrete time f=2an/(2+02*), n=1, 2,... The frquency perturbations were pro-
grammed to control successively four different periodic orbits. The times at which the
control was switched from stabilizing one periodic orbit to stabilize another are labelled
by arrows in the figure.
Recently, it has been shown that addition of a small quasi-periodic noise of the form

n(t) = ﬁ Aicos (vit+ ¢, (13)

where A<« By, are constant, and v; and ¢, are time independent random variables, shifts
the period-doubling bifurcation point, and decreases the size of the zone of existence of
each period-2" solution, and can even eliminate chaos {14, 19].

This phenomenon shows that one can reduce the range in which the control parameter
is allowed to vary by adding simultaneously noise into the system: i.e.,

N
#+ak+bx+cxt=By+ B cos (REQ*))+ Y A;cos (vit+¢:). (14)
i=1
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Figure 1. Parameters of period-one and period-two approximate solutions (2) and (7}, and the £2 intervals of
existence of period-four and period-eight solutions; a=0-05, b=0, c=1, By=0-03, B, =0-16. The solid linc
indicates stable solutions while the broken line indicates unstable solutions.
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Figure 2. Successive control of period-one, -two, -four and -eight orbits. The arrows indicate the times of
switching; a=0-035, =0, c=1, B,=0-03, B; =016, =097,
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Quasi-periodic noise given by equation (13) is an approximation of the realization of the
band-limited white noise stochastic process with zero mean and a spectral density

2 —_—
s(v)= {0 /{Vmax Vissin)s VE[Vinin, Vmax]},

0’ v ¢ [ Vlm‘n ) Vmax]

(15)

where o is the intensity of the noise and [V, Vmex] i the interval of the frequencies
considered {14, 19]; this approximate realization can be easily simulated experimentally.

An example of this type of control is shown in Figure 3. In this case, to illustrate the
effect of the control, solutions of appropriate periods as perturbed by the noise expression
(13} were obtained and are plotted in the figure.
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Figure 3. Successive control of period-one, -two, -four and -eight orbits with noise added to the system. The
arrows indicate the times of switching; a=0-05, b=0, c=1, B,=0-03, B, =0-16, £2=0-97, 4,=0-004, v,,;,=0-9,
Voax = 1-1, N=200.

The analytical technique for controlling chaos in Duffing’s equation, as presented in this
paper, is based on (a) the approximate period-one, -two and -four solutions and their
stability limits computed by the harmonic balance method, and (b) Feigenbaum’s universal
constant for the asymptotic ratio of the stability intervals of the 2" and 2"*' periodic
solutions. It can be applied to the class of Duffing’s equations for which the harmonic
balance method analysis shows the possibility of period-doubling bifurcation (4,=0 in
equation (4)).

An interesting novelty of this method is the use of noise to reduce the necessary range
over which the control parameter is varied. This 1s important as the method requires larger
perturbations of the control parameter than the method of references [1, 2).

The method presented is less general than the Ott-Grebogi- Yorke method. On the other
hand, it has some advantages. The control can be applied at any time and one can switch
from one periodic orbit to another without returning back to the chaotic behaviour,
although after each switch transient chaos is observed. The lifetime ¢ of this transient
chaos strongly depends on initial conditions, and here it has been found that ¢ <400(x/
(£22+£0Q%)). In the method one does not have to wait unti] the trajectory is close to an
appropriate unstable orbit. In some cases this time can be long. All the information
necessary for the control can be obtained analytically from equation (1). One does not
need to have long-time numerical solutions (time series). It is not necessary to consider
any information obtained from a Poincaré cross-section. This allows one to take the
frequency {2 as a control parameter without worrying that by varying £2 one is changing
the Poincaré cross-section.
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