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Recently, there has been a growing interest in studying forced dynamical systems with
multiple incommensurate forcing terms. Forcing at (at least) two irrationally related fre-
quencies is common in engineering systems; indeed, forcing at a single frequency is likely
to be the exception rather than the rule. 4 fortiori, in naturally occurring dynamical
systems, physical or biological, a multi-peaked spectrum of forcing is to be expected.

The dynamics of these systems is generally substantially different from that of single
frequency appropriate counterparts: for example, the types of invariant sets supporting
such systems are more complicated. Quasi-periodic forcing implies that the most elemen-
tary invariant sets are tori, rather than periodic orbits as in single frequency driving. In
addition, new invariant sets can be found, as in the case of recently discovered strange
non-chaotic attractors [1-10].

Works on quasi-periodically forced system have been written from mathematical [1, 117,
physical [2-10] and, more recently, from mechanical engineering [9, 10] standpoints.

In our previcus work [8] we found some interesting properties of frequencies spectrum
of quasi-periodically forced systems, which can be summarized in Figure 1. Let us say that
we have a system with forcing frequencies w; and ®,. Consider @, as a constant and take
@; as a control parameter, When ®,/w; is rational the system considered is of course
periodically forced, and if it is not chaotic we observe a relatively simple frequency spec-
trum. Going with @, out of the point w;/w,= rational number we observe a trifurcation
of each frequency in the power spectrum: i.e., in a vicinity of each frequency component
two new symmetrical component arise. A further increase or decrease of w; results in the
origin of other frequency components in the mechanism described.

In this letter we show that such similar properties of frequency spectra are characteristic
of experimental quasi-periodically forced systems. We propose a simple method for pre-
dicting frequency spectrum components.

The experimental system under investigation here is the one presented in Figure 2. In
this test rig oscillating bodies 1 and 2 are in contact on their surfaces, through a dry
friction force. A detailed description of our experiments has been given elsewhere {9, 10].
In reference [9] we showed that the friction force between both bodies can be chaotic and
in reference [10] we estimated the dimensions of the possible attractors, pointing out the
importance of the so-called normal degree of freedom. Here, we concentrate on the proper-
ties of frequency spectra of the displacements x, and x,. Typical examples of these spectra
are shown in Figures 3(a) and (b). In Figure 3(2) we have the spectra obtained when the
ratio @i/, is very near to the rational value of 3. In this case the power spectra have
significant peaks at @, , 2w,, 3w, and 4w,, and of course the responses x,(r) and x,(¢) are
2r /@, -periodic. In Figure 3(b) we present the spectra for @,/w,=3-102. .., which is
slightly higher than the value of the previous case. In Figure 3(b) is shown the existence
of the other peaks which are present in the vicinity of the peaks of Figure 3(a). New peaks
appear in pairs symmetrical in respect to the main ones: for example, at frequencies
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Figure 1. Typical structure of the power spectrum of quasi-periodically forced system.
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Figure 2. The experimental rig.

(40, — w;) and (w,— wy), and (71 ~2@2) and (2w2— 5@;)—both marked in Figure 3(b).
Generally, we observe a structure of the power spectra similar to that described in Figure
1, which is characteristic for the whole range of system parameters [12].

The described structure of the power spectra allows us to develop the following method
for predicting components of the power spectra. This method is based on the following
construction. We plot the diagram of the possibie spectrum frequencies as a function of
the excitation frequency @, with the other frequency @, fixed; see Figure 4. The diagram
shows the lines describing the frequencies of the type f;;= i@ £j,. The level of complica-
tion of the picture depends on the maximum values of the numbers ¢ and j selected. The
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structure is repeatable; this means that by decreasing the window size similar patterns can
be obtained, as shown in Figures 4(a) and 4(b). The number of / and j which is sufficient
for the analysis of our experimental results is about 21.

Of course, not all of the predicted peaks are always present in the power spectra, but
the accuracy of the prediction is high, as is shown in Figures 5(a) and 5(b), where we have
compared the values of the predicted peaks with these found in experiments.
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Figure 5. Predicted and observed components of the power spectra. (subsystem 1 the top part, subsystem 2
the bottom part). {a) @, =10-45, @,=31-45 Hz; (b) w,=10-52, w,=32-62 Hz,

To summarize, we have found that a specific structure of the power spectra of quasi-
periodically forced systems which was previously determined in numerical experiments [8]
is present in real experimental systems as well, and seems to be general. The existence of this
structure allows one to develop a graphical method for prediction of the main fregencies in
the power spectra. It can also be used to identify routes to chaos. Determination of the
significant peak in the power spectrum, which is not predicted by our method, can be
taken as an indicator of Hopf bifurcation. We have to note here that Hopf bifurcation in
a two frequency forced system creates the third incommensurate frequency and a three
frequency torus as an invariant set. It is well known that such a torus is very unstable
{11, and that its break-up creates a strange attractor. A similar method which considers
frequencies (iw, +jo;) /2", i, j,n=1,2, ..., can be developed to identify the torus doubling
route to chaos,
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