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Abstract-The realization of stochastic resonance in chaotically forced systems is discussed and a new 
measure of it is introduced. 

The phenomenon of stochastic resonance was introduced by Benzi et al. [l-3] to explain 
the periodicity of Earth’s ice ages. They showed that the small periodic perturbations due 
to the Earth’s wobble could lead to large-scale climatic changes via nonlinear cooperative 
effect between periodic and random fluctuations. Several theoretical and experimental 

analyses have appeared in which the main characteristics of this phenomenon were 
described [4-131. The primary signature of stochastic resonance is that the addition of 
random noise in the periodically modulated systems can improve the signal-to-noise ratio as 
a signal peak in power spectra appears or becomes sharper, relative to that observed with 
no externally injected noise. This property can be summarized in Fig. 1, where the power 
spectra of the response of the dynamical system are presented. In both cases an external 
periodic excitation l cosfit and small random noise c(t) are inputs into the dynamical 
system. When the intensity of random noise is small a power spectrum of the response x(t) 
is nearly flat as shown in Fig. l(a). In the second case-Fig. l(b) random noise input c(t) 
is larger and a power spectrum has sharper peak and larger noise-to-signal ratio. Stochastic 
resonance is essentially a nonlinear phenomenon, requiring the presence of multiple stable 
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Fig. 1. A property of the phenomenon of stochastic resonance: (a) small noise; (b) larger noise. 
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states; the basic ingredients are generic enough that it is usually expected to occur in a 
wide variety of physical systems. Most of the papers on stochastic resonance phenomena 
[l-12] consider regular (not chaotic) systems. The only exception [13] describes stochastic 
resonance in the Chua’s circuit in the regime of the two co-existing symmetrical Rossler 
type attractors. It was shown that in the presence of both sinusoidal and random forcing 
the co-existing attractors merge together giving birth to the double scroll attractor and 
result in the amplification of the sinusoidal signal intensity. 

In this paper we investigate the possibility of stochastic phenomena in chaotically forced 
systems. Based on the autocorrelation function of the frequency spectra we introduced a 
new measure of stochastic resonance which is especially suitable for chaotically forced 
systems. Chaotic forcing has some advantages in comparison with periodic one and recently 
a growing interest in chaotically forced systems is observed, for example refs [14--171. 
Using chaos we can for example correct certain nonlinear out-of-phase problems, eliminate 
fractal basin boundaries [16] and control unstable orbits [18]. Dynamics of chaotically 
forced systems is strictly connected with a phenomenon of synchronization of chaotic 
signals [14- 16, 17, 19-241. Synchronization in chaotic systems seems to be interesting not 
only from the theoretical point of view. It gives rise to new applications, such as using 
chaos for secure communication [23,24]. 

In our numerical investigation we considered the dynamical behaviour of a particular yet 
representative case of a pair of unidirectionally coupled Duffing’s oscillators: 

dx12 dxi 
----t/J,--- 
dt2 dt 

Xl + Xl3 = ycos(fh) 

dx?’ dx? 
__ + I+ 
dt’ 

- x2 + x23 = E-Y, + T(r) 

(la) 

(lb) 

where /3,, /$. y, E and 0 are constant. c(t) is a white noise with intensity D and the 

following properties 

(j(t)) = 0 (i;(t)<(t + r)) = oh(r) 

where ( ) and c?(r) denotes the averaging operator and the delta function, respectively. 
Equations (1) are typical bistable systems and in the absence of any forcing they are 
characterized by two stable fixed points x _ (x = - 1, dn/dt = 0) and x + (x = 1. d.x/dt = 0). 

In our system (1) the output from the first oscillator excites the second one. We consider 
the case when the response of the first oscillator is chaotic, e.g. [j, = 0.15, 1’ = 0.3. R = 1.0 
[25]. In the chaotic regime fixed points x- and x, become unstable but chaotic response 
may show some regularity over short timescales with occasional substantial deviations. as 
the trajectory spends time in the neighbourhood of one of unstable fixed points (,u_ or x +) 
between sporadic excursions to the neighbourhood of another. The phase portrait and the 
power spectrum of the chaotic forcing x1 are shown in Fig. 2(a) and (b). The parameters of 
the equation (lb) (3? and E are taken in such a way that in the absence of random noise 
(D = 0) two co-existing symmetrical chaotic attractors exist as shown in Fig. 3(a). In Fig. 
3(b) we show a power spectrum of x3. In this case the chaotic forcing is too small to direct 
a trajectory out of the neighbourhood of one of the unstable fixed points (x _ or .Y +) to the 
neighbourhood of the other one. With a noise added to the system (D # 0) we observe a 

phenomenon of the stochastic resonance. It is observed as two co-existing attractors shown 
in Fig. 3(a) merge together and create one chaotic attractor shown in Fig. 4(a). In the 
power spectrum of xj shown in Fig. 4(b) the peaks are sharper than in the noiseless case 
and become even sharper with the increase of the noise intensity D as shown in Fig. 4(c). 
The physical mechanism of the observed stochastic resonance is the noise induced 
‘chaos-chaos’ intermittency of Anishchenko [26]. It should be noted that the term 
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Fig. 2. The characteristics of the chaotic forcing x1: /3, = 0.15. y = 0.3. n = 1.0; (a) phase portrait; (b) power 
spectrum. 

‘intermittency’ includes here the phenomena when two nearby attractors, of possible 
different types (e.g. limit cycles, torus, chaotic attractor) collided with each other at some 
critical parameter ,u* in the absence of noise. Such bifurcation transitions include the 
‘cycle-chaos’ type intermittency, the ‘torus-chaos’ intermittency, and the ‘chaos A-chaos 
B’ intermittency like in the example considered in this paper. 

As in the case of the chaotic forcing the power spectrum of signal x, is continuous [see 
Fig. 2(a)] it is impossible to define a signal-to-noise ratio measure of stochastic resonance 
like in the case of periodically forced systems as it is not clear which peak in the spectrum 
of x3 has to be taken as a signal. To avoid this trouble we propose a new measure of 
stochastic resonance: the autocorrelation function of the power spectra, which is defined as 
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Fig. 3. The characteristics of the response x3: @l = 0.3, E = 0.25. D = 0: (a) phase portrait: (b) power spectrum. 

where P(j) is the value of the power at the jth frequency index, and M is the number of 
discrete points in the spectrum. This provides a good measure of the flatness’ of the 
spectrum, and C takes value 1 when the spectrum is completely flat and value 0 when 
there are S peaks. Now we introduce a quantity which can serve as a sensitive indicator of 
the sharpness of the peaks. It is given by 

s = -log,,, c 

where S = 0 is a signature of the flat spectrum (no peaks), and S = 00 is the signature of 
(very sharp) 6 peaks. In Fig. 5 the value of S is plotted vs noise intensity D. It is clearly 
visible that the sharpness increases with increasing noise up to D = 0.09 which is typical for 
features of stochastic resonance phenomenon. 

Finally, we remark that the stochastic resonance phenomenon has been numerically 
observed in system (1) by changing either the parameter /3,, or the parameter E in the 
vicinity of the transition point from two co-existing chaotic attractors to one chaotic 
attractor and seems to be robust. 
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Fig. 4. The characteristics of the response x3: fi2 = 0.3, E = 0.25; (a) phase portrait: D = 0.02; (b) power 
spectrum: D = 0.02; (c) power spectrum: D = 0.04. 
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Fig. 5. The autocorrelation function of the spectrum as a measure of stochastic resonance 

To summarize we showed here that the stochastic resonance phenomenon can occur in 
bistable or multistable systems, not only in the presence of periodic forcing but in the case 
of chaotic forcing as well. For chaotically forced systems the autorcorrelation function of 
the power spectra can be considered as a measure of the stochastic resonance. The noise 
induced ‘chaos-chaos’ intermittency seems to be the typical mechanism of stochastic 
resonance in chaotic systems with both periodic and chaotic forcing. 
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