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Abstract-A mechanical experiment is described in which dry friction provides a nonlinear coupling 
between forced linear oscillators. Interpretation of the aperiodic behaviour of the system suggests 
that the friction force is a chaotic function of the relative velocity; the chaotic behaviour may be 
understood in terms of a degree of freedom of motion normal to the surfaces in friction contact. 
Spectral analysis showed a specific structure of power spectra characteristic of quasiperiodically 
forced systems which has already been known from numerical experiments. A new method of 
predicting power spectra components is proposed. 

1. INTRODUCTION 

Recently we can observe a growing interest in studying forced dynamical systems with 
multiple incommensurate forcing terms [l-11]. Forcing at (at least) two irrationally related 
frequencies is common in engineering systems; indeed forcing at a single frequency is likely 
to be the exception rather than the rule. A fortiori, in naturally occurring dynamical 
systems, physical or biological, a multi-peaked spectrum of forcing is to be expected. 

The dynamics of these systems is generally substantially different from that of single 
frequency counterparts, for example, the types of invariant sets supporting such systems 
are more complicated. Quasiperiodic forcing implies that the most elementary invariant 
sets are tori, rather than periodic orbits as in single frequency driving. In addition new 
invariant sets can be found, as in case of recently discovered strange nonchaotic attractors 
[l-11]. Strange nonchaotic attractors show some very similar properties as chaotic 
attractors and special methods have to be applied to distinguish them [7-91. 

In a recent paper, El Naschie demonstrated that Code1 theorem implies strange 
nonchaotic behaviour for classical and quantum system (see ref. [23]). It is thus possible 
that there are more strange nonchaotic attractors than there are chaotic attractors. 

The objectives of current investigations were threefold. Firstly to throw light on the 
rather poorly understood relationship between frictional force and relative velocity in dry 
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sliding contact between solids. Secondly, to generate data from a real mechanical nonlinear 
system forced quasiperiodically and to use methods of analysis of aperiodic time series to 
quantify the strange behaviour of the system (chaotic or strange nonchaotic). Thirdly, to 
prove that the specific structure of power spectra of quasiperiodically forced systems known 
from numerical experiments [lo] can be determined in experiments. 

In Section 2 we discuss the phenomenon of dry friction and describe the experimental 
configuration while in Sections 3 and 4 we discuss the analysis of the experimental data. 
Section 3 describes properties of power spectra and introduces a new method of predicting 
frequency components. The analysis in Section 4 shows that dry friction force has chaotic 
properties. In Section 5 we interpret our results in terms of a model for the observed 
chaotic behaviour. Finally, our results are summarized in Section 6 where we also discuss 
reasons for chaotic behaviour in systems with dry friction. 

2. EXPERIMENTS 

The friction properties of sliding bodies are important in a large number of engineering 
applications. However no universal mathematical model has yet been found which 
satisfactorily describes these physical phenomena. The nature of the dynamic friction forces 
developed between objects in contact is extremely complicated and is affected by many 
factors such as: the frequency of the contact; the response of the interface to normal 
forces; the roughness of the surfaces; the wear; the lubrication; the type of the interface 
and others. Dynamic friction is not a simple phenomenon but comprises a set of factors 
different in nature and behaviour, which cannot be fully described by a simple analytical 
equation. 

Most experimental studies [12-161 show that a dynamical friction force acts in the same 
direction as the relative velocity of the bodies in contact but in the opposite sense. 
generally according to the relationship: 

F- sign (~1, (1) 

where F represents the friction force and V~ the relative velocity. The friction force has 
been found to be an irreversible function of the sliding velocity in all cases, in that the 
accelerating-decelerating branches of the friction-velocity curves are distinct in a cycle of 
motion. For different pairs of metals in contact, the same lubrication conditions may 
produce curves very distinct in shape, and even for the same combination of metals the 
shape, slope and separation between the two branches is very much dependent on both the 
dynamical properties of the test rig and the driving velocity. As a result, the experimental 
characteristics are not defined uniquely by the nature of contacting bodies but are functions 
of all the dynamical properties of the system. Experimental measurements of the dry 
friction force between steel and brass in contact are presented using the equipment shown 
in Fig. 1. The test rig provides additional facilities for dry friction tests compared with 
previous experiments, where in the latter the velocity of one of the contacting bodies was 
constant. In this test rig, all the bodies in contact are oscillating. Two simple subsystems. 
each with its own driving force, F1,* cos QZl.zt, are coupled through the frictional contact 

between brass blocks placed in the bottom subsystem and held by springs in permanent 
contact with the steel shaft of the top subsystem. Friction forces were measured using a 
piezo-electric force transducer connected to a charge amplifier and a 12 bit data acquisition 
system in a microcomputer. Simultaneously, other system variables, for example velocities 
and displacements of both subsystems were measured. 

In addition to the forced vertical oscillations of the masses 1 and 2 it was found that the 
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k* 

Fig. 1. The experimental rig. 

masses 3 oscillate horizontally. These horizontal oscillations are caused by the roughness of 
the sliding surfaces of the masses 1 and 3. It is well-known that even the most polished 
metallic surfaces are not perfectly flat. Under magnification, one observes that these 
surfaces have undulations that form hills and valleys, the dimensions of which are large in 
comparison with molecular dimensions (Fig. 2). This horizontal degree of freedom, though 
very small, nevertheless appears to impose its signature on the overall dynamics of the 
system. A full description and discussion of the experimental technique and results can be 
found elsewhere [ 171. 

3. PROPERTIES OF THE POWER SPECTRA 

In our previous work [lo] we found some interesting properties of frequencies spectrum 
of quasiperiodically forced systems which can be summarized in Fig. 3. Let us say that we 
have a system with forcing frequencies Q1 and Q 2. Consider Q2, as a constant and take Q, 
as a control parameter. When 52,/Q, is rational, the considered system is of course 
periodically forced and if it is not chaotic, we observe a relatively simple frequency 
spectrum. Going with QZ out of the point Q2,/Q2 (=rational number) we observe a 
trifurcation of each frequency in the power spectrum; i.e. in the vicinity of each frequency 
component two new symmetrical components arise. Further increase or decrease of Q22 
results in the origin of other frequency components in the described mechanism. 

In this section we show that the similar properties of frequency spectra are characteristic 
for our experimental system and we propose a simple method for predicting frequency 
spectrum components. 

J 
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Fig. 2. A typical profile of a mild steel specimen after surface ground and polished. 
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Fig. 3. A typical structure of the power spectrum of quasiperiodically forced system. 

Let us concentrate on the properties of frequency spectra of displacements X, and x2. 
Typical examples of these spectra are shown in Fig. 4(a, b). In Fig. 4(a) we have spectra 
obtained when the ratio Q2,/Q2 is very near to the rational value of 3. In this case the 
power spectra have significant peaks at Q,, 2Q,, 38, and 4Q, and of course responses 
x,(t) and x?(t) are 2n/Rl-periodic. In Fig. 4(b) we present spectra for Q,/Qn2 = 3.102 . . 
which is slightly higher than the value of the previous case. Figure 4(b) shows the existence 
of the other peaks which are present in the vicinity of the peaks of Fig. 4(a). New peaks 
appear in pairs symmetrical to the main ones, for example at frequencies: (4Q, - Qz) and 
(Qz - Q,), and, (7Q1 - 2C&) and (2Qz - SC!,)-both marked in Fig. 4(b). Generally, we 
observe a structure of power spectra similar to the one described in Fig. 3 which is 
characteristic for the whole range of system parameters [ 171. 

The described structure of power spectra allows us to develop the following method of 
predicting components of power spectra. This method is based on the following construc- 
tion. We plot the diagram of the possible frequency spectra in the function of the excitation 
frequency-Q2 with other frequency Q, fixed-Fig. 5. The diagram represents values of the 
frequencies of the type f, = &iQ, + jQz, which are simply the lines. The level of 
complication of the picture depends on the maximum values of the numbers i and j 
selected. The structure is repeatable, this means that decreasing the window size similar 
patterns can be obtained as shown in Fig. 5(a) and Fig. 5(b). The number of i and j which 
is sufficient for the analysis of our experimental results is about 21. 

Of course, not all of the predicted peaks are always present in power spectra but the 
accuracy of the prediction is high as it is shown in Fig. 6(a) and Fig. 6(b) where we have 
compared the values of the predicted peaks with those found in experiments. 

4. BEHAVIOUR OF THE FRICTION FORCE 

Typical examples of friction force vs relative velocity dependence in a quasiperiodically 
excited two degrees of freedom system are reproduced in Fig. 7(a-c). In Fig. 7(a) the 
dependence is approximately described by equation (1). This case was obtained for the 
values of Q, and Q2? close together (Q, = 10.051 Hz. Q22 = 14.61 Hz). In Fig. 7(b) and 7(c) 
the cases when the value Q2 is substantially larger than Q, [Q, = 10.51 Hz. 
B, = 30.83 Hz-Fig. 7(b) and 35.03 Hz-Fig. 7(c)], the friction-velocity relation seems to 
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Fig. 5. Construction of the prediction method (9, = 10.0 Hz): (a) main idea: (b) plot for i =: j = I I: (c) enlarged 

part of the plot for i = j = I I. 
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be completely different from that of equation (1); force-velocity changes are now highly 
unpredictable and complicated. 

The behaviour displayed in Fig. 7(b, c) is clearly aperiodic and a first objective of analysis 
is to determine the character of the attractor and behaviour of trajectories near it, i.e. we 
try to argue if the relation between frictional force and relative velocity is chaotic 
(exponentially sensitive to initial conditions) or only aperiodic. 

Our approach follows that of Grassberger and Procaccia [18]. We constructed an 
m-component ‘state’ vector Xi from a time series of friction force F(t) as 

X = {F,(f,), F*(t1 + r)* . . ., F,,(f, + (m - l)q), 

where t is an appropriate time delay (of the order of characteristic physical time scales) 
and used the correlation integral defined for N vectors distributed in an m-dimensional 
space as a function of distance r: 

C(r, m) = ~~~ ~ ~~~(~ - IX, - Xji). 
I I] 1 

where 0 is the Heaviside step function. If the number of points is large enough, as 
assumed above, this distribution will obey a power-law scaling with r for small r: 
C(r, m) - r’, where v is the correlation dimension. As we increase m, the correlation 
dimension is seen to converge to its true value. 

The results of this procedure applied to the data of Fig. 7(b) are shown in Fig. 8. We find 
that the correlation dimension converges to a value greater than 6 for embedding 
dimension m = 8, and appears not to change for further increase of m. The data of 
Fig. 7(c) give results which are very similar, the value of II at m = 8 differs by only 0.1. 

5. A MODEL FOR THE OBSERVED BEHAVIOUR 

The equations for the vertical motion of the two oscillators take the form: 

(m, + m3)XI + f(xi, ii, N) + k,x, = F,cos(QZ,t), 

rn,.f, + f(x,, ii, N) + k2x2 = F,cos(Q,t), 

where N is the total normal force acting at the sliding contacts. 

(2) 



42 J. WOJEWOIIA et al. 

@I 

-150L ~_~ 
-150 

F. 

0 

V,,I 

0’ 

0 150 

Fig. 7. Examples of the friction force-relative velocity diagrams: (a) RI = 10.51 Hz, R? = 14.01 Hz: (b) 
Q, = 10.51 Hz. R2 = 30.83 Hz: (c) R, = 10.51 Hz. R: = 35.03 Hz. 
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Fig. 8. Correlation dimension vs embedding dimension plots: (a) friction force time series of Fig. 7(b); (b) friction 
force time series of Fig. 7(c). 

If we assume N to be constant, flow defined by this equation occupies a six-dimensional 
phase space and can be described by six one-dimensional Lyapunov exponents. Two of 
them, connected with the forcing, are explicitly zero. Of the other four at least two must 
be negative to reflect the dissipative nature of the system. Hence the Lyapunov dimension, 
given by: 

where j is the largest number of Lyapunov exponents for which the sum ciZl& is 
non-negative, is at most 4 if there are no positive Lyapunov exponents. A value of dL 
greater than 4 indicates that at least one Lyapunov exponent must be positive and that the 
system is chaotic. 

Kaplan and Yorke [19] have suggested the equality of the Lyapunov dimension and the 
information dimension, dI, and it has been shown [18] that the correlation dimension Y and 
information dimension dI satisfy: 

Y-C dI. (4) 

Hence the experimental data suggest that, since Y > 6 and hence dI > 6 the model 
represented by equations (2) is inadequate to describe the dynamics, since its phase space 
dimension is too low to produce such a value for dI. 

We propose that the reason for the inadequacy is the assumption in equations (2) of 
constant N. A more adequate model must allow for variations in N associated with small 
irregularities in the surfaces in contact and motion normal to the plane of contact. We 
propose that N can vary and is connected to the system (2) through an equation of the 
form: 

mf, + kx3 - N = constant, (5) 

governing the dynamics of this normal motion, where x3(x1, x2) is the local departure of 
the separation of the brass slides from its mean value as a result of surface roughness. 
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This equation, added to equations (3) produces an eight-dimensional system. An 
embedding dimension of 8 appears to give a good approximation for the value of Y and 
suggests that consideration of the degree normal to the direction of slipping is important in 
modelling the friction force. Calculations of v for other values of Q2, and Qz support the 
converged value close to 6.70 for an embedding dimension of 8. 

Finally, equations (2) and (5) have eight one-dimensional Lyapunov exponents. The 
greatest possible Lyapunov dimension for the case where there is no positive Lyapunov 
exponent is 6. Hence our experimental data suggest that the behaviour of the system is 
chaotic. 

6. CONCLUSIONS 

Our research showed that the nonlinear phenomena investigated on the basis of the 
low-dimensional system described by the differential equations are present in real mechan- 
ical system. 

Particularly, we found that a specific structure of the power spectra of quasiperiodically 
forced systems which was previously determined in numerical experiments [8] is present in 
real experimental systems as well, and seems to be general. This structure allows us to 
develop a graphical method of prediction of main frequencies in the power spectrum. It can 
also be used to identify routes to chaos. Determination of the significant peak in the power 
spectrum which is not predicted by our method can be taken as an indicator of Hopf 
bifurcation. We have to note here that Hopf bifurcation in two frequency forced systems 
creates the third incommensurate frequency and three frequency torus as an invariant set. 
It is well-known that such a torus is very unstable [l] and its break creates a strange 
attractor. The similar method which considers frequencies (iQ, + jQ,)/2”; i. ;, n = 1,2, . . 
can be developed to identify torus doubling route to chaos. 

The friction force properties were found to be not simple, as most of the previous 
assumptions and very complicated dependencies on relative velocity are present. The 
results suggest that for some system parameters friction force is chaotic. As it is impossible 
to describe the friction-velocity ‘dependence by a deterministic relationship a stochastic 
model should be more suitable. The simplest stochastic model which can describe chaotic 
behaviour of friction force can be the one presented in Fig. 9(a-c). For positive relative 
velocities the friction force is a random variable in area A, while for negative relative 
velocity, the friction force is a random variable from area B. Depending on system 
parameters, areas A and B can evolve from these in Fig. 9(a) where the proposed model 
can be considered as a noisy version of relation (I), through these in Fig. 9(b) to these in 
Fig. 9(c) where only the law that the friction force has the same sign as a relative velocity is 
fulfilled. 

Our investigations showed that in the systems with dry frictions there are at least two 

sources of chaos: 

(1) nonlinearity in the system (even as simple as one described by equation (1); 
(2) chaotic properties of dry friction. 

The first source was investigated in a number or’ papers [16,20-221 both experimentally 
and numerically. The second source depends on the materials and configuration properties 
of the system and to the best of our knowledge is mentioned here for the first time. It 
should be noted here that this source is hard to eliminate in practical systems and requires 

further investigations. 
The inclusion of a degree of freedom normal to the plane of slipping is important in 
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Fig. 9. Stochastic models of the dry friction force. 
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modelling the experimental consequences of the dry friction. This so-called normal degree 
of freedom was suggested as important factor in identification of the dry friction long ago 
[13, 141. Our investigations give evidence of its importance based on the theory of 
nonlinear dynamics. 
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