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Intermittency is a type of chaotic behaviour commonly observed in deterministic systems
[1-9]. It is characterized by long periods of regular motion interrupted by short chaotic
bursts. When a burst starts at the end of a laminar phase this denotes an instability of the
periodic motion due to the fact that the modulus of at least one Floquet multiplier is larger
than one. As is well known [10], it may occur in three different ways: a real Floquet
multiplier crosses the unit circle at (+1) or at (— 1) or two complex conjugate multipliers
cross it simultaneously. In their pioneering work [1], Pomeau and Manneville associated
to each of these typical crossings one type of intermittency. Type 1 is characterized by
crossing at (+ 1), type 11 by complex crossing and type III by crossing at (—1). If @* is
a value of a control parameter @ for which the fully developed chaotic motion is observed
and L is an average length of laminar interval then we have the scaling law
L oc(w —w*)~?, where y = 1/2 for type 1 and type III intermittency and y =1 for type
IT intermittency {10 :

Intermittent chaos has been experimentally observed mainly in hydrodynamic systems
[6, 71 and chemical systems [8, 9]. Up to now there have been no reports of experimental
intermittent chaos in a purely solid mechanical system.

In this letter we consider a mechanical system as shown in Figure 1. Mass m can move
on a bar C in direction x between two rigid stops A and B. After each collision with stops
A or B the sign of x(2) is changed. The whole system is connected with a dynamical shaker
and forced by a sinusoidal force F cos wt, where F and @ are respectively the amplitude
and frequency of the forcing. During our experiments we measured the displacement of
the mass m, x(t), using a 12-bit data acquisition system in a microcomputer. Simul-
taneously, we registered the forcing frequency . The time series x(r) allowed us to
calculate a number of impacts, N ineach period of excitation T = 27 /w. It should be noted
here that the number of impacts per excitation period factor has been successfully used
in a description of non-linear behaviour of systems with impacts in numerical analysis
[11, 12). Typical time series N(nT), where n =1, 2, ..., are shown in Figure 2. Complete
description of the dynamics of the systems described will be given elsewhere. Here we only
present the possibility of experimental intermittent chaos in our system.

The analysis of a time series of Figure 2(a) shows that the behaviour of the system for
w = 11 Hz is characterized by long intervals with regular behaviour (two impacts per
period T'). This behaviour is occasionally interrupted with T-periods with zero, one or
three impacts. With the increase of @ to 12 Hz (see Figure 2(b)) the length of regular
two-impact intervals decreases and periods with zero, one or three impacts become more
frequent. With further increase of excitation frequency w to 14 Hz (see Figure 2(c)) the
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Figure 1. A model of a mechanical system with impacts.
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Figure 2. N(nT) time series: (a) w = [1 Hz; (b} w = 2 Hz; (¢) w = 14 Hz.

(c)

273



274 LETTERS TO THE EDITOR
6T I

!
ITO 0.5 10

(w- %)
Figure 3. A plot of L vs. (w —w*): &, experimental results; ——, mean square approximation.

regular two-impact periods are not visible at all and we have fully developed chaotic
behaviour.

If we consider an average length of laminar interval versus forcing frequency w, then
the mean square approximation shown in Figure 3 gives us L oc (@ — w*)™"®+%% where
w* = 10-25 Hz was taken as a threshold for chaos.

The scaling factor y is very close to 1, which is a characteristic value for type II
intermittency. As our experimental system was not free of external noise, it seems that the
chaotic motion that we observed is a good candidate for type II intermittency.

To summarize, in this letter we have presented an example of experimental intermittent
chaos which, to our knowledge, is the first example of such behaviour in a purely solid
mechanical system.
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