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Abstract-We discuss properties of an attractor in the neighbourhood of chaos-hyperchaos transi- 
tion. The intermittency like model and a scaling law for the transition based on the features of the 
Poincare map are developed. We investigate the properties Iof the Lyapunov and correlation 
dimensions in the neighbourhood of the transition point. 

1. INTRODUCTION 

In the last two decades it has been shown that chaotic behaviour is typical for three-dimen- 
sional dynamical systems. The chaotic attractor is characl.erized by one positive Lyapunov 
exponent indicating sensitive dependence on initial conditions (exponential spreading 
within the attractor in the direction transverse to the flow). In higher (at least four) 
dimensional systems beside chaotic attractors it is possible to find hyperchaotic attractors 
with two positive Lyapunov exponents [l-5]. Such attractors involve two directions of 
spreading within the attractor. 

In this paper we investigate properties of the transition from chaos to hyperchaos for two 
coupled systems, 

f - a(1 - x2)1 + x3 = b(sincjt + y) 

jj - a(1 - y2)j + y3 = b(sin cst + X) 

where a, b and w are constant and 

(1) 

.f + LYi + x3 = Bcos m 

L’+pj+y3=x 
(2) 

where (Y, /3, B and w are constant. In numerical investigations we considered a = 0.2, 
u) = 4.0 and b as control parameter in equations (1) and a! = 0.1, B = 10.0, o = 1.0 and p 
as a control parameter in equations (2). 

The first system represents two coupled generalized van der Pol equations and was 
originally investigated in [4]. The second one can be interpreted as Duffing’s equation (the 
second equation in (2)) forced by chaotic ouput from another Duffing’s equation (the first 
equation in (2)). It should be noted here that chaotic forcing has some practical advantages 
in comparison with periodic one. Using chaos we can, for example, correct certain 
nonlinear out-of-phase problems, eliminate fractal batsin boundaries [6] and control 
unstable orbits [7]. The dynamics of chaotically forced systems is strictly connected with 
chaotic signals synchronization phenomenon [S-lo]. 

The structure of the phase-space of both systems indicates that one of the Lyapunov 
exponents must be zero. As well as the typical chaotic attractors (with one positive 
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Lyapunov exponent (+ , 0, - , - , -)) it is possible to find hyperchaotic attractors with two 
positive Lyapunov exponents. Positive Lyapunov exponents indicate exponential spreading 
within the attractor in directions transverse to the flow and negative exponents indicate 
exponential contraction onto the attractor. Under the action of such a flow, phase-space 
volumes evolve in the way schematically shown in Fig. 1 (spreading in directions x and y, 
contraction in directions x and y). 

The plan of the paper is as follows. In Section 2 we investigate the properties of the 
projections of Poincare map of chaotic and hyperchaotic attractors in the neighbourhood of 
the transition point. The scaling law for transition from chaos to hyperchaos for both 
systems (1) and (2) is described. Section 3 presents the properties of Lyapunov and 
correlation dimensions at the transition point. We show that Lyapunov dimension is a 
continuous function of the control parameter and that the correlation dimension exhibits 
one scaling region for chaotic attractor and two scaling regions for hyperchaos. Finally we 
summarize our results in Section 4. 

2. PRECHAOS-HYPERCHAOS INTERMITTENCY 

Projections of Poincare maps onto the plane x-iv for equations (1) are shown in Fig. 2 
and for equations (2) in Fig. 3. In Figs 2(a) and 3(a) we showed projections of Poincare 
maps of the chaotic attractor, while in Figs 2(b) and 3(b) Poincare maps describe 
hyperchaotic behaviour. 

If we compare Figs 2(a) and 3(a) with Figs 2(b) and 3(b) we find that in a chaotic case 
we can observe domains of Poincare map (denoted by A in Fig. 2(c)) where the 
concentration of points is greater than in other parts of the map (denoted by B in Fig. 
2(c)). In the hyperchaotic example we have no such domains. The successive Poincare map 
point of the chaotic trajectory stays in the domain A for a relatively long time and escapes 

Fig. 1. Schematic evolution of phase-space under the action of hyperchaotic flow. 
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Fig. 2. Projections of the PoincarC map of the system (1) a = 0.2, w = 4.0: (a) chaotic behaviour b = 6.0, (b) 
hyperchaotic behaviour b = 7.0, (c) domains A and B. 

from it to domain B for a much shorter time after which it comes back to A. Numerically, 
domain A has been estimated in the following way. After cutting the transient we observed 
the Poincare map for a number of periods T (in the presented examples T = 106). This 
observation allowed us to define domain A and further observation gives us the following 
symbolic dynamics: 

1: the point of the Poincare map is in domain A, 
0: the point of the Poincare map is in domain B. 
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1 2 3 4 x 5 
Fig. 3. (a) Projection of the Poincark map of the system (2)-chaotic behaviour /S = 0.2. (b) Projection of the 

Poincark map of the system (2~-hype~~laoti~ behaviour /? = 0.1. 

For example for the system (1) with b = 5.2 we have the following sequence of symbols, 

(1111 . . . 1) (0.. . 0) (1111 . . . 1) (0.. . 0) . . . 

(104 + 120)T 34T (lo4 + ‘78)T 43T ’ 

The numbers given under each sequence in parentheses indicate the number of periods T 
for which each sequence takes place. 

Let R be an average number of periods T for which the trajectory stays outside domain 
A. If we are increasing the value of control parameters (b in equations (1) and /I in (2)) 
towards the values which are the boundaries of hyperchaos we observe that R increases 
and we found the follo~ng scaling laws for transiticln from chaos to hyperchaos, 

R - (b - bJs 
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and 

R - (P - /%I-’ 

where b, and PC are critical values of control parameters at which the transition to 
hyperchaos occurs. We found 5: = 0.72 f 0.02 for both equations (1) and (2). Similar 
relations can be obtained by the investigation of other projections of the Poincare map. It 
is interesting that for two different systems (1) and (2) we found similar values of 5, 
although it is too early to speculate possible universality. 

Presented properties of the projections of Poincare map suggest the mechanism of 
chaos-hyperchaos transition similar to the mechanism of the classical intermittency [ll] 
with the long evolution in domain A with occasional bursts to the domain B. We proposed 
to call this mechanism prechaos-hyperchaos intermittency, as this phenomenon takes place 
before transition. 

The simple way of coupling in equations (1 and 2) does not allow direct observation of 
the increase of the dimensionality of the attractor after transition to hyperchaos on the 
projections of the Poincare map. Recently such an observation was found to be possible in 
a chaos synchronization schemes [21]. We comment on this problem in Section 4. 

3. DIMENSIONS OF ATTRACTORS AT TRANSITION 

Equations (1) and (2) have the Lyapunov exponents spectrum consisting of five 
exponents and Lyapunov dimensions associated with them 

4 = i + ,;,Ll, (3) 

where j is determined by xi=in 2 0 but zF:‘n < 0. According to the Kaplan-Yorke 
conjecture [12] dL = dI, where dI is an information dimension. Information and Lyapunov 
dimensions are related to the other attractor’s dimensions as follows: 

where dc is a capacity dimension, while d,,, is a correlation dimension [13]. Until now 
there has been no effective way of estimating the capacity dimension of attractors of higher 
dimensional systems, and this dimension will not be considered here. The correlation 
dimension, the second attractor dimension measure which we consider in this paper, is 
defined in terms of the scaling behaviour of the so-called correlation integral. For a d = 2N 
+ 1 dimensional embedding with trajectory vectors & we define the correlation sum as 

Cd(R) = 5 @(R - ih: - %I) (4) 
k,l=l,k#l 

where M is the number of vectors in the data set being analysed and 0 is the Heaviside 
step function. As it is well known, the correlation integral Cd(R) gives the average of the 
relative number of trajectory points within the distance R of another trajectory point. For 
many attractors, the correlation dimension is defined as that number which satisfies 

d corr = log C(R) 
log R 

in the scaling region. In practical situations the scaling region can be rather limited [14,15]. 
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For large R, larger than the size of the attractor, the correlation integral saturates at the 
value of unity. For small R, smaller than the smallest distance between data points, the 
integral goes to zero. Despite these inconveniences the correlation dimension has been 
found as the simplest characterization of experimental attractors, for example in refs 
[16,17] while estimation of Lyapunov exponents from time series can sometimes lead to 
incorrect results [17,18]. 

For example let us consider equations (2). The trajectories of the first equation of (2) are 
located on the 3D manifold. If the trajectories of the whole system (2) are located in this 
3D manifold as well, then the second equation simply reproduces the chaotic osci~ations of 
the first oscillator as all trajectories converge to the attractor of the first equation (2). The 
described manifold exists for any value of the coupled oscillators parameter /3. This enables 
us to investigate the stability of the chaotic limit set located in this manifold as a function 
of p. The Lyapunov exponents spectrum of the coupled system (2) can be divided into two 
subsets A(‘) and ht2) respectively along and orthogonal to the manifold. The first subset of 
Lyapunov exponems is associated with driving system (the first equation of (2)) and 
consists of three exponents describing the evolution of perturbations tangent to the 
manifold. The Lyapunov exponents of the second subset (the second equation of (2)) 
describe the evolution of the perturbations transverse to the manifold. As was shown 
recently by de Sousa [lo], they are equivalent to the conditional or sub-Lyapunov 
exponents of Pecora and Carroll [S]. The dependence of the Lyapunov dimension on /3 
(curbe b) or b (curve a) is presented in Fig, 4 where we have also indicated the intervals 
where the Lyapunov exponents spectrum has one (solid line), two (broken line) positive 
exponents. 

Lyapunov exponents have been computed using a software INSITE [20]. Computations 
have been performed with a P(b)-step equal to 0.005 in the whole interval and with a step 
0.0005 in the neighbourhood of chaos-hyperchaos transition. It clearly appears that in the 
case of equation (2) there is a region for higher values of /3 where all A(‘)-Lyapunov 
exponents are negative (/3 interval: [0.121, 0.21). In this interval the chaotic limit set of the 
whole system (2) is located on the manifold of the attractor of the forcing system (the first 
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Fig. 4. Lyapunov dimension versus fi and b plots; curve a: equation (I): cr = 0.2, w = 4.0, cnrve b: equation (2): 
(Y = 0.1, B = 10.0, w = 1.0. 
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equation in (2)). For the smaller values of /3 at least one il(‘)-Lyapunov exponent is positive 
and the resulting limit set is not restricted to the manifold of the forcing subsystem, and 
we observe a hyperchaos regime. From Fig. 4 one can find that the Lyapunov dimension- 
control parameter /3 or b relation is a continuous function at the transition point from 
chaos to hyperchaos. Figure 5 (a, b) presents log-log plots of the correlation integral (3) 
as a function of the distance R. In Fig. 5(a) the plot shows the results for the chaotic case 
(only one positive Lyapunov exponent) while in Fig. 5(b) we present a hyperchaotic case 
with two positive Lyapunov exponents. 

From these plots one can find that in the case of chaos, the correlation integral exhibits 
only one scaling region, while for hyperchaotic case two scaling regions are visible. As 
shown before, in the chaotic case the trajectories of all oscillators evolve on the 3D 
manifold of the first attractor, and their behaviour is strongly connected (all oscillators 
evolve in the same region of the phase-space-on the attractor of forcing oscillator). In the 
hyperchaotic case other oscillators evolve in the larger dimensional manifolds and their 
behaviour is less connected with the behaviour of the first one (forced oscillators do not 
evolve on the same attractor as a forcing oscillator). With this interpretation our results can 
be explained in terms of Lorenz conjectures [15]. 

The robustness of our conjecture that dL (control parameter) is a continuous function 
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Fig. 5. Log-log plot of correlation integral vs. distance R for equations (2): (a) chaotic regime b = 6.10-equations 
(l), /3 = 0.122-equations (2); (b) hyperchaotic regime b = 6.20-equations (l), /3 = 0.120-equations (2). 
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and that the correlation dimension shifts from one to two scaling regions at the transition 
from chaotic to hyperchaotic behaviour, was confirmed in system (1) where two oscillators 
are mutually coupled (curve (a) in Fig. 5 and 6(a, b)) and in [15] where we considered the 
system of a chain of unidirectionally coupled oscillators at the chaos-hyperchaos boundary. 

4. CONCLUSIONS 

It has been demonstrated here that the chaos-hyperchaos transition can be described by 
the properties of a Poincare map. We proposed the intermittency mechanism and found a 
scaling law describing this transition. However, for simply coupled systems such as 
equations (1) and (2) it is impossible to observe directly the increase of dimensionality of 
the attractor as is possible in the case of feedback coupling mechanism of two chaotic 
systems i = f(x) and 3 = f(y), i.e. 

i = f(x) + K(y - x) (64 

3 = f(Y) (6b) 

where x , y E iR3, K is a constant. In such systems it is possible to find a value of K for 
which both systems (6a) and (6b) synchronize. In this case the coupled system (6) is 
characterized by one positive Lyapunov exponent (in the A(l) subset) and x-y projection of 
the attractor is simply a line (one-dimensional structure). If we have hyperchaotic regime, 
one of the Lyapunov exponents in the j1c2) subset must be positive, so we have no 
synchronization and x-y projection represents a two-dimensional structure [21]. 

Chaotic and hyperchaotic regimes can be distinguished by the knowledge of the whole 
spectrum of Lyapunov exponents. Unfortunately, this distinction cannot be made based on 
the Lyapunov dimension dL or associated with its information dimension dI, as the 
dependence of dL on the system control parameter has been found as a continuous function 
at the chaos-hyperchaos boundary for both periodic and chaotic forcing. This result is not 
trivial and quite surprising, as the information dimension of the attractor plays a crucial 
role in the experimental distinction between strange chaotic and strange nonchaotic 
attractors [17, 201. The correlation dimension allows follow up of the distinction between 
chaotic and hyperchaotic regimes, as we observe a different number of scaling regions in 
both regimes. This property can be useful to follow up the chaos-hyperchaos distinction 
based on a single experimental time series. 
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