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Mechanism of noise-induced resonance
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Based on approximate methods of nonlinear oscillations, we give a possible explanation of the

phenomenon of noise-induced resonance.

PACS number(s): 05.45.+b, 05.40.+j

Stochastic resonance is a phenomenon which is charac-
teristic for systems forced by a sum of noise or chaotic
signal and a weak periodic signal [1]. Under appropriate
conditions a weak periodic signal can be amplified by
noise or chaotic signal.

Recently Bartussek, Hanggi, and Jung studied the
response of a noise-driven absorptive optical bistable sys-
tem which is subjected to deterministic periodic perturba-
tions of the incident light intensity [2]. Beside classical
stochastic resonance they found a phase-sensitive reso-
nance phenomenon which virtually eliminates or
significantly decreases the higher harmonics. They called
this phenomena noise-induced resonance.

In this paper we proposed the possible explanation of
noise-induced resonance. Our mechanism based on ap-
proximate methods of nonlinear oscillations is similar to
the one used in [3] for dynamical description of stochastic
resonance. We consider a particular yet representative
case of Duffing’s equation driven by a weak periodic force
plus a band-limited white noise.

X +ax +bx3=f(t)+ A cosQt (1)

where a, b, A, and Q are constants. f(t) is a zero-mean
stochastic process with spectral density

S(V)=8/(Vmax_vmin) ’ VE(Vmin’Vmax)

0, v&(v

(2)

'min> Vmax )

where 8 is a noise intensity and [V, Vyax] 1S an interval
of considered frequencies. Equation (1) is a single-well
system which can be considered for example as a
mathematical model of a nonautonomous second order
circuit [4].

First consider Eq. (1) without random signal [ f(#)=0].
In this case one can find an approximate periodic solution
in the form

x(1)=C,cos(Qt +¢,)+C,cos(20t +¢,)
+C;c08(3Q1t +¢3) (3)

where the constants C,_; (amplitudes of the first three
harmonics) and ¢,_; (phase difference between oscilla-
tions and periodic forcing) can be estimated by intersect-
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ing Eq. (3) into Eq. (1) and applying, for example, the
harmonic balance method [4,5]. Although the applica-
tion of the described method requires numerical calcula-
tions in the theory on nonlinear oscillation it is called an
analytical one as no direct numerical integration is neces-
sary. Nowadays algebraic calculations in this method
can be easily performed using computer algebra systems.
We used Mathematica Typical relations between
C,_3, ¢,_3 and A4 can be found in [4,5]. Here as we are
interested in the higher harmonics we present a typical
stable curve for C; which is shown in Fig. 1 (curve a). It
it visible that although generally C; increases with the in-
crease of A, it is the region of 4 (4, < A4 < A4,) in which
C; rapidly decreases.

Now consider a complete form of Eq. (1) (with periodic
and random forcing). It is well known that random forc-
ing of the form of band-limited white noise (its realiza-
tions) can be approximated by a sum of N harmonics,

N
f()=8 cos(v; +¥,;) (4)

i=1

where v; and V¥, are independent random variables [5].
Frequencies v; are described by

v, =(i—1/2)Av+8v; + v 5)

where Av=(v,,—Vni,)/N and ¥, are independent ran-
dom variables with uniform distribution on the interval
[0,27]. For a given realization of random forcing f(¢)
the above approximation allowed us to consider Eq. (1) as
a deterministic system. Following an analytical approach
introduced in [5] one can assume the solution of Eq. (1) in
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FIG. 1. C;3(A4) curves for Eq. (1): a=0.04, b=10.0, Q 10.0;
curve a, noiseless system f(¢)=0; curve b, system with noise
8=0.1, vpin=0, V. =50.

1200 ©1995 The American Physical Society



52 BRIEF REPORTS 1201

the form

x(t)=C,cos(Qt +¢y)+ C,cos(2Qt +¢,)

N
+Cjscos(3Qt +¢3)+ 3 Cicos(v;t +¥,) (6)
i=1
where C; and ¢; (i=0,1,...,N) are constant. Inserting
Eq. (6) into Eq. (1) it is possible to compute all constants
in Eq. (6). Typical C; curve for a=0.04, b=10.0,
Q=10.0, N=50000, and vp;, =0, vp,,=50 is shown in
Fig. 1 (curve b). Comparing curve a with curve b in Fig.
1 one finds that an addition of noise slightly changes the
C;(A) plot but for some values of A4 (for example
A =0.28) we can observe a significant decrease of C;. In
Fig. 2 we present the variation of amplitude C; for
different noise intensity 8 and constant amplitude of
periodic signal 4 =0.28 where the effect of noise-induced
resonance is clearly visible. In this plot we showed also
the level of noise in the solution x(¢) of Eq. (1) estimated
as a maximum of the last component in Eq. (6).

The above observation allows us to state that the
noise-induced resonance in Duffing’s equation is caused
by the noise-induced shift of 3Q-resonance curve C;( A4),
particularly by the shift of the region in which C; de-
creases. This shift allows C; to decrease with the in-
crease of noise intensity 8 as shown in Fig. 2. In some
cases C; can be smaller than noise level in solution x (z).
This explains why signal amplification

m=4— (7)
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FIG. 2. C;(8) curve for Eq. (1): a=0.04, 2=10.0, and
A=0.28.

consider in [3] can be zero at noise-induced resonance.

In conclusion, the application of approximate analyti-
cal methods of nonlinear oscillations allows one to ex-
plain a mechanism of noise-induced resonance. We
found evidence that noise-induced resonance in Duffing’s
equation can be explained by the noise induced shift of
resonance curve.

It should be added here that the similar mechanism of
noise-induced resonance can be applied to the systems
forced by chaotic and periodic force instead of considered
here noise and periodic external forces. this result will be
published later.
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