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Abstract- We consider the stability of the synchronized chaotic attractor of two identical, symmetric- 
ally coupled chaotic systems. The transverse stability of the synchronized chaotic attractor can be 
investigated based on the linearization of the transverse flow. In a numerical study we also 
demonstrate the applicability of an approximate approach to understand monotonic and asymptotic 
stability (synchronization) as well as on-off (chaos-hyperchaos) intermittency. Copyright 0 1996 
Elsevier Science Ltd. 

1. INTRODUCTION 

There has been a considerable study of synchronized chaotic systems recently [l-6]. In 
most synchronization procedures two n-dimensional chaotic systems i = f(x) and j = f(y) 
are cou@ed in some way. This coupling creates a 2n-dimensional augmented dynamical 
system X = F(X). Full phase space of this augmented system possesses a smooth invariant 
n-dimensional manifold M. Any orbit originating in this manifold stays there forever, 
approaching the chaotic attractor A of either of the dynamical systems, say 1 = f(x), as 
t += +m. It has been shown that two chaotic systems can synchronize only when the chaotic 
attractor of the n-dimensional dynamical system is stable in the 2n-dimensional phase space 
of the augmented system k = F(X) [7-161. This type of stability is referred to as 
transverse stability. The spectrum of Lyapunov exponents of the augmented system can be 
divided into two subsets: ii(r) representing motion which is tangential, and AC2) transverse, to 
the invariant manifold. It has also been shown that if all transverse Lyapunov exponents 
are negative, then the chaotic attractor A is stable [7-16). 

In this paper we investigate transverse stability of the chaotic attractor A based on the 
properties of the flow transverse to it and its linearization. We consider a system consisting 
of two coupled identical subsystems governed by 

i = j-(x) + D(y - x) 

i = f(Y) + D(x - Y:), 
(1) 

where x, y E R”‘, D E R, D > 0, and we assume that the decoupled subsystems R = f(x) 
and j = f(y) have an asymptotically stable chaotic attractor A in an invariant manifold M 
defined by the synchronized state n = y. 

The outline of this paper is as follows. Section 2 describes the basic bifurcations which 
are characteristic for eqn (1). In Section 3 we introduce the concept of transverse 
linearization in the neighbourhood of the chaotic attractor. Section 4 presents a numerical 
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study of an example where two Rossler systems were coupled together. Finally, we 
summarize our results in Section 5. 

2. TRANSVERSE BEHAVIOUR IN THE NEIGHBOURJ3OOD OF THE CHAOTIC ATTRACTOR 

For the analysis of the transverse stability of a chaotic attractor A we introduce the new 
variables 

R(t) = ;w> + Y(f)), e(t) = tta> - r(t)>* (2) 

With this transformation one replaces system (1) with the equivalent system 

R = &(R + e) + f(R - e)) = h(R, e) (34 

t = +(f(R + e) - f(R - e)) - 2De = g(R, e; D). PJ) 

The variable e(t) describes the evolution transverse to the n-dimensional invariant 
manifold M, explained in Section 1, while the variable R(t) yields the evolution of the 
theoretical ‘centre-of-mass’ position of the combined subsystems in the presence of 
transverse motion. In the limit of no transverse motion, R(t) describes the evolution in the 
n-dimensional invariant subspace M. 

The spectrum of Lyapunov exponents of eqn (3) are now divided into two subsets: the 
set A(‘) is associated with the evolution of R(t) describing the dynamics on (or close to) the 
manifold M, while the other set il (*) describes the propagation of the perturbations 
orthogonal to M. 

In terms of e(t) we can define synchronization in the following way. Two chaotic systems 
i = f(x) and 3 = f(y) are synchronized if 

lim e(t) = 0. 
t-++= (4) 

If the limit (4) is fulfilled for all initial values in the neighbourhood of e(t) = 0, then the 
attractor A is asymptotically stable. 

If additionally the following inequality holds 

dIe(t)I < 0 
dt ’ 

then the synchronization is monotonic, i.e. after each perturbation the distance between 
the actual trajectory and the attractor is a decreasing function of time. In the case of 
monotonic synchronization for all initial values in the neighbourhood of e(r) = 0 we refer 
to the chaotic attractor A as monotonically stable. Of course, the monotonic stability is a 
special case of asymptotic stability. 

Let us next describe the various stability transitions of the chaotic attractor A in terms of 
the control parameter D. For sufficiently large D, say D > D3, the chaotic attractor A is 
monotonically stable, the strongest type of stability discussed here. Synchronization is 
monotonically achieved for all initial conditions in the neighbourhood of A. Estimates of 
D, should be useful information for safe synchronization. 

Most analyses, however, have in the present context been dealing with asymptotic 
stability. It can be shown [l] that the chaotic attractor A is asymptotically stable 
(synchronization is achieved for all initial conditions in the neighbourhood of A) for 
D > D2 = @j/2, where Ai” is the leading Lyapunov exponent of the attractor. At Dz = 
@‘/2 we have a bifurcation where the chaotic attractor A looses its asymptotic stability. 
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Fig. 1. Schematic illustration of the order in which stability bifurcations of the synchronized, chaotic attractor 

occur on an arbitrary scale of the synchronization control D. 

For D < D2 the attractor is still stable (there exists a 2n-dimensional basin b(A) with a 
positive Lebesque measure). However, it is not asymptotically stable as b(A) does not 
contain all neighbourhoods of A. In this case, for a typical trajectory of (3), all transverse 
Lyapunov exponents A(*) are negative. However, there are still initial conditions dense in 
the attractor for which one of the transverse exponents is positive. In the region D < D2, 
the chaotic attractor A can also have a locally riddled basin [17-201, if there is an E > 0 
such that for every point x E b(A) any arbitrarily small ball centred on x contains a set 
of points of positive measure whose orbits exceed a prescribed distance E from A. In our 
case there would be riddled basins of two attractors: the chaotic attractor A in case of 
synchronization, and the hyperchaotic attractor in case of no synchronization. 

With a further decrease of the control parameter D our system undergoes a blowout 
bifurcation (chaos-hyperchaos transition) [7-161 at, say D = D1. After this bifurcation, 
one of the transverse Lyapunov exponents for a typical orbit on the attractor will always be 
positive. The chaotic attractor A becomes a chaotic saddle. A chaotic invariant set A 
having a dense orbit is a chaotic saddle [21] if there is a neighbourhood U of A such that 
b(A) fl U is greater than A but has zero Lebesque measure. Here (D < Dl) we observe 
the phenomenon of on-off intermittency (chaos-hyperchaos intermittency) [7-161 in which 
a typical phase space trajectory spends some of the time in the neighbourhood of the 
attractor A and occasionally burst away from it. For on-off (chaos-hyperchaos) intermit- 
tency the largest transverse Lyapunov exponent is positive but small. Due to the finite time 
fluctuations of it there are stretches of time where the orbit is attracted to the invariant 
manifold M (i.e. the fluctuations may permit all transient Lyapunov exponents negative in 
these stretches). For D < Do the largest transverse Lyapunov exponent is sufficiently large 
and an escape to a completely different attractor is possible. In this case the chaotic 
attractor A becomes a normally repelling chaotic saddle, i.e. if there is an attractor in the 
invariant manifold M, but all points which are not lying on this manifold eventually leave a 
neighbourhood of A. 

The typical bifurcations of system (3) are summarized in Fig. 1. Each of these 
bifurcations can be seen as supercritical (subcritical) according to the creation of nearby 
invariant sets as D increases (decreases) through the bifurcation points. In Fig. 1 
bifurcations are shown as subcritical. 
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3. TRANSVERSE LINEARIZATION IN THE NEIGHBOURHOOD OF A CHAOTIC ATTRACTOR 

Let us introduce the transverse linearization of eqns (3a) and (3b) in the neighbourhood 
of the chaotic attractor A, i.e. in the neighbourhood of the fixed point e(t) = 0 with the 
condition R(t) = x(t) = y(t) E A. In this case one obtains the equations 

where 

f = h(x, 0) = f(x) (5) 

& = B(x; D)e, (6) 

B(x; D) = 
dg(R, e; D) R=xcA 

de - e=~ 

The concept of transverse linearization in the neighbourhood of the attractor that we 
introduce here, allows us to reduce the stability analysis of the attractor to the problem of 
investigating the stability of the fixed point e(t) = 0 of the non-autonomous eqn (6). We 
emphasize that the origin e(t) = 0 in the Euclidean subspace defined by the vector e(t) 
represents the chaotic attractor A, while e(t) represents transverse perturbations in the 
neighbourhood of it. Fortunately, the linearized eqn (5), describing the goal attractor A is 
now decoupled from the transverse motion and independent of the parameter D. However, 
the transverse dynamics of eqn (6) is still coupled to the motion x(t) of the attractor 
through the matrix B(x; D). 

We can state the following conjecture. 

Conjecture. The chaotic attractor A of the n-dimensional dynamical system 1 = f(x) is 
asymptotically and monotonically stable in the 2n-dimensional phase space of the aug- 
mented dynamical system k = F(X), if and only if, for all x E A, e(t) = 0 is an 

asymptotically stable fixed point of eqn (6). 
In the following section we propose a simplified approach to predict the synchronization 

stability from eqns (5) and (6). Instead of calculating the D-dependent Lyapunov 
exponents of the chaotically forced transverse perturbations e(t), we merely investigate the 
local adiabatic stability of e(t) along the attractor. Such an analysis gives a quick idea of 
the locally stable and unstable parts of the attractor, but the success of the numerical 
predictions depends on the requirement that the evolution on the chaotic attractor is 
sufficiently smooth, and that there are not too many regions of different local stability 
types for the transverse perturbations. In this analysis the local eigenvalues of B(x; 0) are 
the key quantities. 

4. NUMERICAL EXAMPLE 

As an example let us consider two Rossler systems, coupled in the same way as shown in 
eqn (1). We have the vector field 

f(X) = tb jT-ff--;),)! (8) 

where a, b and c are constants, and f(y) has the identical structure. When introducing the 
new variables e(t) and R(t), the original equation (1) is transformed into the equivalent 
one (3), which in this case has the explicit form: 
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i 
-2Del - e2 - e3 

fj= el + (a - 2D)e2 
’ 

WI 
R3e, + (RI - c - 2D)e3 ! 

Since the components of the transverse motion appear quadratically in (9a) they will 
disappear completely in the transverse linearization, and R(t) will describe the synchron- 
ized chaotic Rossler attractor, i.e. R(t) = x(t) = y(t) E A. Equation (9b) is already linear 
in the components of e(t), so the linearized equations (5) and (6) are now defined with the 
matrix B(x; D) given by 

i 

-20 -1 -1 
B(xl, x3; D) = 1 (a - 20) 0 . 

x3 0 (,x1 - 20 - c) 1 
(10) 

In our numerical investigation we consider the following parameter values: a = 0.15, 
b = 0.20, and c = 10.0. In the case of D = 0 (no coupling) the dynamics of both Rossler 
systems evolve along the chaotic attractor A [22]. This chaotic attractor is characterized by 
the following spectrum of Lyapunov exponents: h’,l’ = 0.13, Ai” = 0, A:’ = - 14.1. 

The exact system of equations (9) allows a direct numerical analysis of the transverse 
behaviour. In Fig. 2(a)-(d) we illustrate the typical evolution of the transverse flow 
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Fig. Z(a). Caption on p. 1576. 
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Fig. 2(b). Caption on p. 1576. 

corresponding to each characteristic behaviour indicated in Fig. 1. The top part of the 
figures shows the 3D-trajectories e(t) and the bottom part shows the time series of the 
vertical component es(t). In Fig. 2(a) the chaotic attractor A represents a monotonically 
asymptotically stable one, and we can observe that the distance between points on the 
transverse trajectory e(t) and the attractor A seems to decrease monotonically. Asymptotic 
stability which is not monotonic is described in Fig. 2(b). Transverse evolution e(t) 
approaches the attractor A and finally finishes on it, but its distance from the attractor may 
sometimes increase slightly, as is visible in the es(t) plot. In Fig. 2(c) we observe an on-off 
(chaos-hyperchaos) intermittency. The transverse trajectory e(t) spends some time in the 
neighbourhood of the chaotic attractor, but occasionally bursts away from it. Finally in Fig. 
2(d) the periods of evolution in the neighbourhood of A are not visible any more and the 
chaotic attractor is a normally repelling chaotic saddle. 

For this example the transverse linearized flow in the neighbourhood of the chaotic 
attractor can be given an adiabatic interpretation of its local stability, parametrized by the 
x1- and q-components of the attractor. In Fig. 3(a)-(d) we show the characteristic types of 
eigenvalues of the matrix B(xi, x3; D) for x1 and x3 in the ranges [-20.0 20.01 and 
[-1.0 40.01, respectively. In the grey regions all eigenvalues are either real and negative or 
complex with negative real parts, while in the white regions at least one real eigenvalue is 
positive or a pair of complex eigenvalues have positive real parts. Figure 3(a) illustrates 
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Fig. 2(c). Caption overleaf. 

that, for D = D3 = 3.5 all (x1, x3) E A are in grey region and the eigenvalues of the matrix 
B(xl, x3; D) have all negative real parts, i.e., the fixed point e(t) = 0 is expected to be 
locally stable in the whole attractor, and so we conclude that the chaotic attractor A is 
monotonically stable. 

For smaller values of D, part of the attractor is in the grey region and part of it is in the 
white one as shown in Fig. 3(b), (c). This means that in one part of the attractor e(r) = 0 is 
a locally stable fixed point, while in the other part it is unstable. From the adiabatic point 
of view it would be possible to investigate the asymptotic stability further by integrating the 
leading, local exponent of the transverse perturbation along with the attractor and see if 
the time averaged value stabilizes as negative or not. However, such a calculation would be 
similar to analysing Lyapunov exponents numerically. In this study we have confirmed 
in all our calculations that D3 > D > D2 = 0.065 (= @/2) stabilizes the synchronized 
attractor within 1500 time units, but not monotonically. 

As the coupling D is made smaller still D < D,, on-off (chaos-hyperchaos) intermit- 
tency occurs in the combined system depending on the amount of time the trajectory in the 
‘goal’ attractor shares between the locally stable and unstable regions. 

For very small D (D < D,,) most of the attractor is in the white region as can be seen in 
Fig. 3(d). Since the chaotic attractor spends most of its time very near the surface x3 = 0, it 
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Fig. 2. Typical behaviours of the transverse motion: (a) monotonic, asymptotic stability; (b) asymptotic stability; 
(c) on-off intermittency; (d) hyperchaos. 

is very important for the contraction of the transverse motion that this surface is locally 
stable. There is a critical value D = D1 = 0.0375, at which the whole surface x3 = 0 
changes its stability. Hence, for D < Do we do not expect any overall stability of the 
chaotic ‘goal’ attractor, as it becomes a normally repelling chaotic saddle. 

5. CONCLUSIONS 

In this paper we have investigated the transverse stability of the chaotic attractor of an 
n-dimensional dynamical system in the 2n-dimension phase space of two identical coupled 
systems. We identified and described a ‘new’ transition in which the chaotic attractor A 
looses monotonic stability. This phase transition seems to be characteristic for identical 
systems which are coupled to synchronize. 

The introduced concept of transverse linearization in the neighbourhood of a chaotic 
attractor representing a synchronized state of two identical subsystems, allows us to 
describe its stability in three-dimensional subspace transverse to the attractor. The linear 
approach allowed to determine coupling (control) parameters for which system (1) 
undergoes two important types of bifurcations. One in which the asymptotic monotonic 
stability is replaced by asymptotic stability and another one when we have the end of 
on-off (chaos-hyperchaos) intermittency. However, we were not able to determine 
blowout bifurcations by this approach. 
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