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Ah&act-We show a new type of synchronization in coupled chaotic systems which is characterized 
by a small synchronization time. We introduce the concept of monotonic stability for which all 
perturbations decay monotonically and describe transition from a monotonically stable to an 
asymptotically stable chaotic attractor. Copyright @ 19% Elsevier Science Ltd. 

The problem of synchronization of chaotic systems can be understood as a problem of the 
stability of an n-dimensional chaotic attractor in an m-dimensional phase space (m > n). 
Let A be a chaotic attractor. The basin of attraction P(A) is the set of points whose 
w-limit set is contained in A. In Milnor’s definition [l] of an attractor the basin of 
attraction need not include the neighbourhood of the attractor. For example, a riddle basin 
[2, 31 which has recently been found in practical physical systems [4, 51, has a positive 
Lebesgue measure but does not contain any neighbourhood of the attractor. Attractor A is 
an asymptotically stable attractor if it is Lyapunov stable [&A) has a positive Lebesgue 
measure] and /3(A) contains a neighbourhood of A. 

In this paper we define the monotonic stability of an attractor as a special case of 
asymptotic stability and show that it is characteristic for coupled systems. 

Consider a system 

i = f(z) 

consisting of two coupled identical subsystems governed by 

i = f(x) + D(y - x) 

>’ = f(Y) + D(x - Y), 

(1) 

(2) 

where x, y E R”, na3, DER+. Assume that 1 = f(x) and j = f(y) have the asymptotic- 
ally stable chaotic attractor A in invariant subspace R” = N given by the relation x = y. 

As it was shown in Ref. [6] chaotic attractor A is asymptotically stable in R2” if 
D > D1 = h/2, w h ere 1 is the largest Lyapunov exponent of the chaotic state. In this case 
the synchronized state x(t) = y(t) is achieved for all initial conditions in the neighbourhood 
of A. The detailed description of the dynamics of system (1) for D < A/2 can be found in 
Ref. [7] and will not be discussed here. Dynamical phenomena characteristic for this range 
of D values have been also described in Refs [2, 3, g-131. 
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With a further increase of 1.I ! D ,a iA) we can observe a special case of the asymptotic 
stability of attractor A. Let z(, = [x0, ynjr’ E /3(A) be the initial perturbation of the 
trajectory of system ( 1) and let us define the distance of the perturbed trajectory z(t) from 
the attractor A as 

d(z(r). A) ‘7 \*‘((.I” - Vi)2 -i- -- (1) y,,).‘i. zc 1% ) 

If d(z(t), A) is a monotonically decreasing function of time r then attractor A IS 
monotonically stable. It should be noted here that monotonic stabiiity depends on a metric 
d(z( t), A). In this sense monotonicity is a quantitative property of the attractor and may 
depend on the observables. For example, the linear system (x. y) = (--ax + hv. -ay - h.~) 
with a > 0, 6 > 0 exhibits a monotonic decay of d = .v’ ,+ 3” S but if we choose d = C.X’ -+ J’* 
with c >> I this decay will no longer be monotonic. In this example eigenvalucs are 
complex (with negative real part) so the transition from monotonic to asymptotic stability is 
not connected with the well known linear analysis transition from spiral to node. 

This observation allows us to add a new transition characterized by the loss of monotonic 
stability to the already known blowout (chaos-hyperchaos) and loss of asymptotic stability 
bifurcations [7] which are characteristic for system (1). As the transition point between 
monotonic and asymptotic stability varies with the choice of metric. this transition cannot 
be called bifurcation. Each of these bifurcations and monotonic transitions can be seen to 
be supercritical (subcritical) according to the creation of nearby invariant sets as D 
increases (decreases) through the bifurcation point. 

For the simplified analysis of the stability of chaotic attractor A let us introduce a new 
variable: 

P(l) =- siri - Y(l). (-ti 

With this transformation one replaces system (I) with the equivalent system 

i- == f(.u ) - I)? (5a) 

c = I‘(X) -I’ f‘(s - 4) - 2De = #(X, e). (Sb) 

The first equation (Sa) describes evolution in the neighbourhood of n-dimensional invariant 
subspace N, while the second equation (5b) describes the evolution transverse to subspace 
N. The spectrum of Lyapunov exponents of eqn (5) can easily be divided into two subsets 
>!I’ associated with the evolution of .x(l) describing dynamics in subspace N while the other 
set At2) describes propagation of perturbation normal to N. 

Let us linearize eqn (Sb) in the neighbourhood of the attractor A, i.e. in the 
neighbourhood of the fixed point L’ = (1 with the condition x E A. In this case one obtains 
the equation, 

where 

and x = [x, ej“. 
The introduced concept of linearization in the neighbourhood of the attractor allows us 

to reduce the problem of analysis of the stability of the attractor to the problem of 
investigation of the stability of the fixed point e = 0 of eqn (6). Matrix B(x, D) is defined 
at given values of x(t) which represents solution of eqn (5a) so numerical integration of 
eqn (Sa) is necessary to calculate B(x, D). Eigenvalues of 43(x, 0) can be considered only 
as functions of .x(~), where xCi) is a discrete series such as xfi) E x(t), i.e. solution x(t) has 
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been discretized. Eigenvalues of the time-dependent matrix B(x, D), after appropriate 
averaging over the whole attractor A, lead to the Lyapunov exponents. Without averaging 
the properties of eigenvalues of B(x, D) this allows us to distinguish between monotonic 
and asymptotic stability, giving the following result. 

Proposition: The chaotic attractor A is asymptotically and monotonically stable in metric 
(3) in R*” if for all x E A, e = 0 is the asymptotically stable fixed point of eqn (6). 

Proof of the above proposition is elementary (it is based on the fundamental results of 
the linear stability) so it will not be given here. 

As an example let us consider two coupled Rossler systems 

i = -(y + z) + D(u - x) 

jJ = x + uy + D(u - y) 

i = b + z(x - c) + D(w - z) 

zi = -(u + w) + D(x - 24) 

ti = u + au + D(y - u) @b) 

14 = b + w(u - c) + D(z - w), 

where a, b and c are constant. In our numerical investigation we considered the following 
parameter values: a = 0.15, b = 0.20, c = 10.0, i.e. in the case of D = 0 (no coupling) the 
dynamics of both Rossler systems evolve along the chaotic attractor A [14] and typical 
trajectories are characterized by the following Lyapunov exponents: Lr = 0.13, & = 0, 
hj = -14.1. 

For this example the transverse linearized flow in the neighbourhood of the chaotic 
attractor is given by 

tl = -2Del - e2 - e3 

k2 = -2Dez + e, + ae2 

i3 = -2De3 + zel + (x - c)e3 

(9) 

and is linear in the e variable. 
For this example the transverse linearized flow in the neighbourhood of the chaotic 

attractor A can give an adiabatic interpretation of its local stability, parametrized in the x 
and z components of the attractor. In Fig. l(a,b) we show the characteristic types of 
eigenvalues of the matrix B(x, z, D) for x and z in the ranges [-20.0 20.01 and 
[-1.0 40.01, respectively. In the grey regions all eigenvalues are either real and negative or 
complex with negative real parts, while in the white regions at least one real eigenvalue is 
positive or a pair of complex eigenvalues has positive real parts. Figure l(a) illustrates 
that, for D = 3.5 all (x, z) E A are in the grey region, and the eigenvalues of the matrix 
B(x, z, D) all have negative real parts, i.e. the fixed point e(t) = 0 is asymptotically stable 
for all points on the attractor A. We conclude that the chaotic attractor is monotonically 
stable. We identified the monotonic transition point for D = D2 = 3.49. 

For smaller values of D, part of the attractor is in the grey region and part of it is in the 
white one as shown in Fig. l(b). This means that in one part of the attractor e(t) is a 
locally stable fixed point, while in the other part it is unstable. From an adiabatic point of 
view it would be possible to investigate the asymptotic stability further by integrating the 
leading local exponent of the transverse perturbation along with the attractor and see if the 
time averaged value stabilizes as negative or not. However, such a calculation would be 



similar to the numerical analysis ot’ Lyapunov exponents. In this study we have coniirmed 
in all our calculations that D, ::> D ‘-a 0.065 (- .?,/2) stabilizes the synchronized attractor. 
but not monotonically. All our numerical computations have been performed using the 
software INSITE [IS 1. 

The stronger case of monotonic stability occurs whcrr we observe that all components oi 
r(t) are eventually monotonic. i e. when 

is a monotonically decreasing function of time. This property is difficult to predict but has 
potential practical applications in communications [ 161. 

To summarize we have defined a monotonic stability of a strange chaotic attractor and 
analysed the transition from asymptotic stability to monotonic stability. Associated with 
monotonic stability. monotonic chaos synchronization is characterized by short synchroniza- 
tion time and may have practical applications. The introduced concept of linearization in 
the neighbourhood of the attractor allows us to describe this transition in three-dimensional 
subspace transverse to the attractor. 

ia> Lk3.5 
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Fig. l(a). Cupnon opposite. 
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(b) D=O.O4 
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Fig. 1. Illustration of the local stability [grey region e(t) locally asymptotically stable, white region e(t) = 0 locally 
unstable]: (a) monotonic, asymptotic stability; (b) asymptotic stability. 
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