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We show that two coupled chaotic systems initially operating on two different simultaneusly coexisting
attractors can be synchronized. Synchronization is achieved as one of the systems switches its evolution to the
attractor of the other one. Final attractor of the synchronized state strongly depends on the actual position of
trajectories on their attractors in the moment when coupling is introduced. Our system can be considered as an
example of locally intermingled basins of attraction in physical system.@S1063-651X~96!01806-5#

PACS number~s!: 05.45.1b

Synchronization of two chaotic systems has received con-
siderable attention in the last few years@1–6#. Synchroniza-
tion procedures require introduction of some kind of cou-
pling between two chaotic systems. One of the
synchronization procedures is based on the mutual coupling
of two chaotic systemsẋ5f ~x! and ẏ5f ~y!, ~x,yPRn, n>3!
by one-to-one negative feedback mechanism

ẋ5 f ~x!1d~y2x!,

ẏ5 f ~y!1d~x2y!, ~1!

whered5[d,d,...,d] TPRn is a coupling vector. System~1!
can be written as

ż5g~z!, ~2!

where z5[x,y] TPR2n. Manifold defined by the synchro-
nized statex5y is an invariantn-dimensional manifold of
the system~2!, i.e., any trajectory initialized in this manifold
remains there for all time. This manifold is called a synchro-
nization manifold.

The problem of synchronization of chaotic systems can be
also understood as a problem of stability ofn-dimensional
chaotic attractor inm-dimensional phase space (m.n). Let
A be a chaotic attractor. The basin of attractionb(A) is the
set of points whosev-limit set is contained inA. In Milnor’s
definition @7# of an attractor the basin of attraction need not
include the neighborhood of the attractor. AttractorA is an
asymptotically stable attractor if it is Lyapunov stable@b(A)
has positive Lebesque measure# and b(A) contains neigh-
borhood ofA. Recently it has been shown that for certain
types of systems the basin of attraction of attractorA can be
riddled @8–14#. A riddle basin has a positive Lebesgue mea-
sure but does not contain any neighborhood of the attractor,
i.e., for any pointx0 in the riddled basin of an attractor a ball
in the phase space of arbitrarily small radiusr has a nonzero
fraction of its volume in some other attractor’s basin. The
basin of the other attractor may or may not be riddled by the
first basin. If the second basin is also riddled by the first one,
we call such basins as intermingled. Riddled basins have
been observer numerically and experimentally in a few
physical systems@9–14#. Up to now intermingled basins
have been observed in rather nonphysical maps@8#.

Most of the work on the chaos synchronization problem
has been associated with identical systems operating on

some chaotic attractor. In this paper we investigate the dy-
namics of two coupled quasihyperbolic systems for which
co-existing chaotic attractors are possible for the same pa-
rameter values. We examine the following questions:~1! can
chaotic systems operating on different co-existing attractors
synchronize?,~2! on which of the attractors synchronization
occurs?

As an example we consider two Lorenz systems@15#
coupled by one-to-one negative feedback mechanism,

ẋ152sx11sy11du~ t2t0!~x22x1!, ~3a!

ẏ152x1z11rx12y11du~ t2t0!~y22y1!, ~3b!

ż15x1y12bz11du~ t2t0!~z22z1!, ~3c!

ẋ252sx21sy21du~ t2t0!~x12x2! ~3d!

ẏ252x2z21rx21du~ t2t0!~y12y2!, ~3e!

ż25x2y22bz221du~ t2t0!~z12z2!, ~3f!

wheres, b, r andd are constants.Q(t2t0) is a Heaviside
function@Q~t2t0)51 for t>t0 andQ~t2t0)50 for t,t0#. If
both chaotic systems evolve on an asymptotically stable cha-
otic attractorA it can be shown that their evolutions would
be synchronized for allt0 whend>l/2, wherel is the larg-
est Lyapunov exponent of the typical trajectory onA.

In what follows we assumed that ford50 both chaotic
systems evolve on different chaotic attractors. Such a situa-
tion takes place, for example fors510, b58/3 andr5211.
Depending on initial conditions two coexisting attractors are
possible. The first system@Eqs. ~3a!–~3c!# is assumed to
evolve on the attractorA1 shown in Fig. 1~a! and the second
one @Eqs. ~3d!–~3f!# evolves on the attractorA2 shown in
Fig. 1~b!. Both chaotic systems evolve on different attractors
when coupling is introduced fort5t0. For t.t0 after the
transition period the evolution of both systems is synchro-
nized on one of the coexisting attractorsA1 or A2. Such an
evolution is shown in Fig. 2. During the transitional period
the evolution of the first system@Eqs. ~3a!–~3c!#
X1(t)~X15[x1 ,y1 ,z1]

T! was switched from attractorA1 to
A2 then synchronized with the evolution of the second one
@Eqs.~3d!–~3f!# X2(t)~X25[x2 ,y2 ,z2]

T! on the attractorA2.
The switch between attractorA1 andA2 ~or A2 andA1! of

the evolution of one of the systems is possible as the pertur-
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bation d(X22X1) @or d(X12X2)# moves trajectoryX1(t)
@or X2(t)# out of the basin of attractionb(A1) of attractorA1
@or b(A2) of attractorA2# to the basin of attractionb(A2) of
attractorA2 @or b(A1) of attractorA1#. Simultaneously the
perturbationd(X12X2) @or d(X22X1)# cannot move the
trajectory X2(t) @or X1(t)# out of the basin of attraction
b(A2) of attractorA2 @or b(A1) of attractorA1#. Perturbed
trajectoryX2(t) @or X1(t)# leaves attractorA2 ~or A1! but
evolves within its basin of attraction. Before the final switch
to one of the attractorsA1 or A2 both trajectories can switch
several times between attractors in transitional period. Theo-
retically these switches could be permanent giving rise to the
intermittent type of behavior, but we did not observe such an
evolution in system~2!.

We observed that the final attractor of the synchronized
state strongly depends on the value oft0 ~on the time when
coupling is introduced!, i.e., on the initial locationsX1,2~t0!
~X1,25[x1,2,y1,2,z1,2]

T! of trajectories on attractorsA1 and
A2. At the time t5t0 chaotic trajectories X1,2(t)
~X1,25[x1,2,y1,2,z1,2]

T! are at the pointsX1(t0)PA1 and
X2(t0)PA2 which strongly depend on initial conditions
X1~0! andX2~0! characterizing trajectories of both systems,
introducing coupling att5t0 we are unable to predict on
which attractor the synchronization occurs.
Z~0!5@X1~0!,X2~0!#T can be considered as the initial condi-
tions for the augmented 2n-dimensional system~2!. We per-
formed our computations for 104 on randomly chosen initial
conditions X1~0!5@21.060.1,2.060.1,060.1#T and
X2~0!5@221.060.1,060.1,060.1#T and introduced coupling
at t05104 when both systems are on their attractors. Our
results show that both chaotic attractorsA1 and A2 are
equally probable as a place of a synchronized regime. The
basins of the attractorsA1 ,A2 of the coupled system~3!
@considered as a six dimensional system of the type~2!# on
the chaotic attractorsA1 and A2 of the uncoupled systems
~3a!–~3c! and~3d!–~3f! are intermingled~Fig. 3!. The basins
of attraction of attractorsA1, andA2 are indicated, respec-
tively, in white and black. In the computations shown in Fig.
3 initial location of the trajectoryX2(t) on attractorA2 have
been fixed in the pointX2(t0)5@48.1422,44.6099,187.1101#T

and the location of the trajectoryX1(t) on attractorA1 have

FIG. 1. Two co-existing attractors of uncoupled Eqs.~2!: d50,
s510,b58/3, andr5211;~a! x1~0!521.0,y1~0!52.0,z1~0!50, ~b!
x2~0!5221.0,y2~0!50, z2~0!50.

FIG. 2. Evolution of coupled Eqs.~2!: d52, s510, b58/3,
r5211, and t05104 ~initially both systems evolve on attractors
shown in Fig. 1!.

FIG. 3. Locally intermingled basins of attraction. The basins of
attraction of attractorsA1 and A2 are indicated, respectively, in
white and black. In the computations shown in this figure initial
location of the trajectoryX2(t) on attractorA2 have been fixed in
the pointX2(t0)5@48.1422,44.6099,287.1101#T and the location of
the trajectoryX1(t) on attractorA1 have been varied.
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been varied. Basins of attraction of the attractorsA1 andA2
are not intermingled in whole six-dimensional phase space of
system~3! @in the six-dimensional phase space the basins
b(A1) andb(A2) have only fractal boundary#, but are inter-
mingled in the lower three-dimensional manifolds on which
attractorsA1 andA2 are located. As coupling in system~3! is
introduced when both subsystems~3a!–~3c! and ~3d!–~3f!
are either onA1 or A2, all initial conditions for six-
dimensional system~3! are located on a three-dimensional
manifold where basinsb(A1) and b(A2) are intermingled.
This special case of basins of attraction which are inter-
mingled on some lower-dimensional submanifold of the
phase space but are not intermingled in the whole phase
space we called locally intermingled. The phenomenon of
locally intermingled basins of attraction seems to be typical
for the systems with lower-dimensional synchronization
manifold like system~2!. All our numerical computations

have been carried out using the softwareINSITE @16#.
To summarize we showed here that in some quasihyper-

bolic systems synchronization of chaotic trajectories which
initially evolve on different coexisting attractors is possible.
The full discussion of this problem is given in@17#. One-to-
one coupling introduced in such systems can lead to the lo-
cally intermingled basins of attraction of the initial attractors.
Even if the initial location of trajectories on attractorsA1 and
A2 is known with infinite precision, we are unable to deter-
mine, on the basis of any finite calculation, in which basin
this location lies and finally we cannot be sure on which
attractor the evolution will synchronize. This type of uncer-
tainty seems to be common for this class of dynamical sys-
tems with an invariant lower-dimensional manifold~syn-
chronization manifold! and may have some practical
implications.
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