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Uncertainty in coupled chaotic systems: Locally intermingled basins of attraction
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We show that two coupled chaotic systems initially operating on two different simultaneusly coexisting
attractors can be synchronized. Synchronization is achieved as one of the systems switches its evolution to the
attractor of the other one. Final attractor of the synchronized state strongly depends on the actual position of
trajectories on their attractors in the moment when coupling is introduced. Our system can be considered as an
example of locally intermingled basins of attraction in physical sys{&h063-651%96)01806-5

PACS numbd(s): 05.45+b

Synchronization of two chaotic systems has received consome chaotic attractor. In this paper we investigate the dy-
siderable attention in the last few yedlis-6]. Synchroniza- namics of two coupled quasihyperbolic systems for which
tion procedures require introduction of some kind of cou-co-existing chaotic attractors are possible for the same pa-
pling between two chaotic systems. One of therameter values. We examine the following questidfiscan
synchronization procedures is based on the mutual couplinghaotic systems operating on different co-existing attractors
of two chaotic systemz=f(x) andy=f(y), (x,yeR", n=3) synchronize?(2) on which of the attractors synchronization

by one-to-one negative feedback mechanism occurs?
. As an example we consider two Lorenz systefi§]
x=f(x) +d(y—x), coupled by one-to-one negative feedback mechanism,
y="f(y)+d(x—y), ) X1 =— 0%yt oy;+d6(t—tg) (Xp—X1), (33
whered=[d,d,...,d]TeR" is a coupling vector. Systelf1) Yi=—X1Z3+rX;—y;+do(t—to)(yo—yi1),  (3b)
can be written as
. z1=X1y1—bz;+do(t—to)(z,—7), (39
z=9(2), 2
Xo=— 0Xo+ 0y, +dO(t—tg) (X1 —X 3
where z=[x,y] "eR?". Manifold defined by the synchro- 2=~ oXpt oYa+dO(t— o) (Xa —xz) 39
nized statex=y is an invariantn-dimensional manifold of Vo= — XoZo -+ IXo+dO(t—t —V,), (39
the systent(2), i.e., any trajectory initialized in this manifold y2 27 2 (=t (y2=ye
remains there for all time. This manifold is called a synchro- Z,=Xpy,—bz,— +dO(t—1o) (2, 2,), (3f)

nization manifold.

The problem of synchronization of chaotic systems can bevhereo, b, r andd are constants(t—t,) is a Heaviside
also understood as a problem of stability roflimensional  function[@(t—ty) =1 fort=ty andO(t—ty) =0 for t<tg]. If
chaotic attractor irm-dimensional phase spacm$n). Let  both chaotic systems evolve on an asymptotically stable cha-
A be a chaotic attractor. The basin of attract@fA) is the  otic attractorA it can be shown that their evolutions would
set of points whose-limit set is contained irA. In Milnor's be synchronized for all, whend=\/2, where\ is the larg-
definition[7] of an attractor the basin of attraction need notest Lyapunov exponent of the typical trajectory An
include the neighborhood of the attractor. Attracfois an In what follows we assumed that fat=0 both chaotic
asymptotically stable attractor if it is Lyapunov stabi{A) systems evolve on different chaotic attractors. Such a situa-
has positive Lebesque measuend B(A) contains neigh- tion takes place, for example fer=10, b=8/3 andr =211.
borhood ofA. Recently it has been shown that for certain Depending on initial conditions two coexisting attractors are
types of systems the basin of attraction of attragtaran be  possible. The first systerfEqgs. (38—(3c)] is assumed to
riddled[8-14). A riddle basin has a positive Lebesgue mea-evolve on the attractoh,; shown in Fig. 1a) and the second
sure but does not contain any neighborhood of the attractonne [Egs. (3d)—(3f)] evolves on the attractoh, shown in
i.e., for any pointx, in the riddled basin of an attractor a ball Fig. 1(b). Both chaotic systems evolve on different attractors
in the phase space of arbitrarily small radiusas a nonzero when coupling is introduced for=t,. For t>t, after the
fraction of its volume in some other attractor’s basin. Thetransition period the evolution of both systems is synchro-
basin of the other attractor may or may not be riddled by thenized on one of the coexisting attractgks or A,. Such an
first basin. If the second basin is also riddled by the first onegvolution is shown in Fig. 2. During the transitional period
we call such basins as intermingled. Riddled basins havéhe evolution of the first system[Egs. (38—(3c)]
been observer numerically and experimentally in a fewX;(t)(X;=[Xy,y1,2,]") was switched from attractoh, to
physical systemg9-14]. Up to now intermingled basins A, then synchronized with the evolution of the second one
have been observed in rather nonphysical ni&ps [Egs.(3d)—(3)] X,(t) (X,=[X,,Y2,2,] ") on the attractoA,.

Most of the work on the chaos synchronization problem The switch between attractér, andA, (or A, andA,) of
has been associated with identical systems operating dhe evolution of one of the systems is possible as the pertur-
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FIG. 3. Locally intermingled basins of attraction. The basins of
attraction of attractors\; and A, are indicated, respectively, in
white and black. In the computations shown in this figure initial
location of the trajectoryX,(t) on attractorA, have been fixed in
the pointX,(to) =[48.1422,44.6099,287.111and the location of
the trajectoryX;(t) on attractorA; have been varied.

bation d(X,—X;) [or d(X;—X,)] moves trajectoryX;(t)

[or X,(t)] out of the basin of attraction(A;) of attractorA;

() -40 20 X2 [or b(A,) of attractorA,] to the basin of attractiob(A,) of
attractorA, [or b(A;) of attractorA,]. Simultaneously the

FIG. 1. Two co-existing attractors of uncoupled E(®: d=0,  perturbationd(X;—X;) [or d(X,—X;)] cannot move the
0=10,b=8/3, andr =211;(a) x4(0)=21.0,y,(0)=2.0,2,(0)=0, (b) trajectory X,(t) [or X;(t)] out of the basin of attraction
X5(0)=—21.0,y,(0)=0, z,(0)=0. b(A,) of attractorA, [or b(A;) of attractorA,]. Perturbed
trajectory X,(t) [or X;(t)] leaves attractoA, (or A;) but
evolves within its basin of attraction. Before the final switch
to one of the attractor8, or A, both trajectories can switch
several times between attractors in transitional period. Theo-
retically these switches could be permanent giving rise to the
intermittent type of behavior, but we did not observe such an
evolution in systen(2).

We observed that the final attractor of the synchronized
state strongly depends on the valuetgfon the time when
coupling is introducey i.e., on the initial locations<; 4(ty)
(Xlz:[xlvz,ylvz,zlyf) of trajectories on attractoré, and
A,. At the time t=t, chaotic trajectories X t)
(X12=[X12Y1221 7 Ty are at the pointsXy(ty) eA; and
X,(tg) € A, which strongly depend on initial conditions
X41(0) and X,(0) characterizing trajectories of both systems,
introducing coupling at=t, we are unable to predict on
which attractor the synchronization occurs.
Z(O)=[X1(0),X2(O)]T can be considered as the initial condi-
tions for the augmentedr2dimensional systert2). We per-
formed our computations for #@n randomly chosen initial

5O T T T T conditons  X;(0)=[21.0+0.1,2.0+0.1,0-0.1]" and
X, 1 X,(0)=[—21.0+0.1,0+0.1,0+0.1]" and introduced coupling
251 T 7 at t,=10" when both systems are on their attractors. Our
I 1 results show that both chaotic attractohs and A, are
of = 1 equally probable as a place of a synchronized regime. The

basins of the attractoré\;,A, of the coupled systeni3)

251 T N [considered as a six dimensional system of the f@&on
¥ ] the chaotic attractoré; and A, of the uncoupled systems
-5(_)5;01 ot 2'5 S '2‘5' : '1;0 (38—(3¢) and(3d)—(3f) are intermingledFig. 3). The basins
(b) X of attraction of attractor#\;, and A, are indicated, respec-

tively, in white and black. In the computations shown in Fig.
FIG. 2. Evolution of coupled Eqs2): d=2, =10, b=8/3, 3 initial location of the trajectory,(t) on attractorA, have
r=211, andty=10" (initially both systems evolve on attractors been fixed in the poinK,(to) =[48.1422,44.6099,187.111
shown in Fig. 1. and the location of the trajectofy, (t) on attractorA; have
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been varied. Basins of attraction of the attractdysandA,  have been carried out using the softwarsITE [16].

are not intermingled in whole six-dimensional phase space of To summarize we showed here that in some quasihyper-
system(3) [in the six-dimensional phase space the basingolic systems synchronization of chaotic trajectories which
b(A;) andb(A;) have only fractal boundatybut are inter- initially evolve on different coexisting attractors is possible.
mingled in the lower three-dimensional manifolds on whichThe full discussion of this problem is given ia7]. One-to-
attractorsA; andA, are located. As coupling in syste®) is  one coupling introduced in such systems can lead to the lo-
introduced when both subsystert@a—(3c) and (3d)—(3f)  cally intermingled basins of attraction of the initial attractors.
are either onA; or A, all initial conditions for six-  Eyen if the initial location of trajectories on attractdsand
dimensional systen(3) are located on a three-dimensional 5 s known with infinite precision, we are unable to deter-

mqnifold vyhere basinb(A_l) and b(Ay) are intt_armingleq. mine, on the basis of any finite calculation, in which basin
This special case of basins of attraction which are inter;

minaled on some lower-dimensional submanifold of th this location lies and finally we cannot be sure on which
gied on some lower-dimensional submanitold of M€, 4ctor the evolution will synchronize. This type of uncer-
phase space but are not intermingled in the whole phasg

space we called locally intermingled. The phenomenon o ainty sgt(;ms tq be c_:on:rrlmn fo:j_tms cl_ass IOf dyn_?erlcal Sys-
locally intermingled basins of attraction seems to be typical ehms with an |nve_1fr|e|1n o(\;ver- |meL13|ona manitoteyn- |
for the systems with lower-dimensional synchronizationchronization manifold and may have some practica

manifold like system(2). All our numerical computations MPlications.
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