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Abstract 

Two Lorenz systems working in different chaotic ranges can be stabilized simultaneously in the same steady state by 
coupling them through the negative feedback mechanism. This kind of locking is robust as it can be realized for a wide 
range of parameters. 

PACS: 05.45. + b 

Recently it has been demonstrated that two identical chaotic systems k = fix> and j = fl y) (x, y E Iw”, n 
2 3) coupled with each other can be synchronized [l-6]. Coupling of homochaotic systems (i.e. systems given 
by the same set of ODES but with different values of the system parameters) can lead to the practical 
synchronization (i.e. x r y, but I] x - y (I G E where E is a vector of small parameters) [7-91. In such coupled 
systems we can also observe a significant change of the chaotic behavior of one or both systems [11,12]. This 
so-called “controlling chaos by chaos” procedure has some potential importance in a range of contexts varying 
from mechanical and electrical systems [7], where control of the system is the objective, to geophysical systems, 
like the atmosphere or oceans, where improvement in basic understanding and prediction is the main motivation 
[ 11,121. Other phenomena are possible as the coupled systems become a new augmented system, which has its 
own dynamics. In Ref. [lo] it was shown that two Lorenz systems working in different chaotic ranges can be 
stabilized simultaneously in different periodic orbits by coupling them through certain system parameters. 

In what follows we introduce another phenomenon characteristic for such systems. We consider two 

monochaotic systems 

i=f(q, x) (1) 

and 

Y=f(as* Y) (2) 

(x, YE [w”, Q, 2 E [w, n 2 3) coupled with each other by negative feedback. The augmented system is as 

follows, ’ 

k=f(a,, x) +qy-x), j,=f(azv Y) +&(x-y), (3) 
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where k,,, = [k,,,, k,,,,. .., k,,,lT E R” is a coupling vector. We show that system (3) can be locked to the 
steady state given by the relations 

f(a, 9 x) + k,( y -x) = 0, f(%’ Y) +u-Y) =o. (4) 

This kind of locking can be interesting with respect to suppressing chaos and may have some practical 
applications. 

As an example we consider two Lorenz systems coupled by a one-to-one negative feedback mechanism, 

X,= -oX,+aY,+k,(X,-X,), (5a) 

I;, = -x,2, +r,x,-Y,+k,(Y,-Y,), (5b) 

i, =X,Y, -hZ, +kl(Z2-Z1), (5c) 

X,= -aX,fcrY,+k,(X,-X,), (5d) 

YZ = -X,Zz + r2X2 +k,(Y, - Y,), (se) 

i2=X2Y2-bZ2+k,(Z, -Z2), (59 

where CT, b, r,,2, k, and k, are constants. The Lorenz model [I31 has been often proposed as a paradigm for 
chaos. Two coupled Lorenz models introduced in Eq. (5) can be considered as models of geophysical flows 

m. 
All our numerical computations have been carried out using the software INSITE 1141. We considered the 

following parameter values: (T= 10.0, b = 8/3, r, = 40.0 for the first system (Eqs. (5a)-(5c)) and r2 = 30.0 
for the second one (Eqs. (5d)-(5f)). In the case of k, = k, = 0 (two separate Lorez models) both systems have a 
chaotic attractor. In Fig. 1 we show the bifurcation diagram of the coupled system (5) for k, = 2.0, with k, as a 
control parameter. The analysis of this diagram shows that for small values of k, both systems are chaotic. With 
the increase of k, we can observe windows where both systems are locked to the steady state given by Eq. (4). 

To analyse the stability of the steady state we performed a linear stability analysis. Eqs. (5) have been 

linearized in the form 

X=AX, (6) 
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Fig. 1. Bifurcation diagram of Eqs. (5); (T = 10.0, b = 8/3, r, = 40.0, rz = 30.0, kz = 2.0. 

Fig. 2. Stability domain of the steady state in the k, - kz plane; c = 10.0, b = 8/3, r, = 40.0, rz = 30.0. 
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Fig. 3. Stability domain of the steady state in the r, -r? plane; (T = 10.0, b = 8/3. k, = kl = 2.0. 

Fig. 4. Comparison of the linear and nonlinear steady state stability analyses; (T = 10.0, b = 8/3, r, = 40.0, rz = 30.0. k? = 2.0. 

where X = [X,, Y, , Z, , X,, Y2, Z,lr and 

-o+k, 0 

-(l: k,) -X,, 

k, 0 0 

r1 -Z,, 0 k, 0 

A= 
Y,, Xl, -(b+k,) 0 0 k, 

k? 0 0 -(b+k,) 

-(I: 

0 ’ 

0 k, 0 r2 - z2, k,) -X2, 

0 0 k2 Y 2s x2, -(b+k2) 

(7) 

where XIS, Y,,, Z,,, XzS, Y,, and Z,, are steady states given by Eq. (4). 
Analysis of the eigenvalues of matrix A allows us to determine the stability domain of the steady state in the 

coupling parameter plane k,-k, and the system parameter plane r,-r2, shown in Fig. 2, where it can be seen 
that steady state behavior is stable in a quite large range of coupling coefficients and in Fig. 3. In this case we 
fixed k, = k, = 2.0. Again we observe that the steady state behavior is stable for a large range of parameters r, 

and r2. 

The above linear analysis has been compared with a nonlinear analysis based on the estimation of Lyapunov 
exponents. The steady state is stable when all Lyapunov exponents of Eqs. (5) are negative. The results of this 
comparison are shown in Fig. 4 where it is seen that the linear analysis gives a good approximation of the 

stability domain. 
In conclusion, we show steady state locking in two homochaotic systems. In two initially chaotic systems 

chaos is suppressed and they are locked to the same steady state. This locking is observed for a wide range of 

system parameters. Our results show that this kind of locking is robust in many chaotic systems. 
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