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Abstract 

We describe the synchronization and desynchronization procedures for chaotic orbits of quasi-hyperbolic systems. 

1. Introduction 

The synchronization of two nonlinear and poten- 
tially chaotic system is a phenomenon of some im- 
portance in a range of contexts varying from me- 
chanical and electrical systems, where control of the 
system is the objective, to geophysical systems, like 
the atmosphere or oceans, where improvement in 
basic understanding and prediction is the main moti- 
vation. In particular it has been shown recently that 
two identical dynamical systems 

(1) 

4=f(q, 407 a>, (2) 

where p, q E R”, n > 3, a E Iw is a control parame- 
ter, p. and q. represent initial conditions which for 
a = a, have an asymptotically stable chaotic attractor 
B (the same for both systems), can synchronize 
[l-9]. 

Synchronization may be achieved through a con- 
trol procedure based on the OGY method [lo- 121, or 

through some form of coupling of the systems, and a 
common procedure is to introduce small negative 
feedback, in which the difference between the cur- 
rent states of the two systems is used as an inhibitory 

effect on the separation of trajectories. This method 
has been developed recently [ 13- 161 and has been 
shown to be effective when the coupled system has a 
single attractor. In this paper we extend the idea to 
systems with more than one competing attractor, 
consider mechanisms for desynchronization, and ap- 
ply the method to two different chaotic systems. 

Consider the synchronization procedure devel- 
oped in Refs. [ 13- 161 applied to the system (l), (2). 
We assume that the second chaotic system is coupled 
with the first one by negative feedback, 

g( P* 4) = 4 P - 4). (3) 

where d=[d,, d, ,..., dn]‘, d;>O, i= 1,2 ,..., n, 
is a coupling constant. Coupling (3) results in the 
following dynamical system, 

Li=f(~, a), 4=f(s, a) +d(p-q). (4) 

As it was shown in Refs. 17-91 it is possible to find 
such values of d that both chaotic systems synchro- 
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nize for all initial points pO and q. in the neighbour- 

hood of chaotic attractor B, i.e. p(t) = q(r). 

The above results hold if B is the only possible 

asymptotically stable attractor of systems (1) and (2) 

for a,. However, when Eqs. (1) and (2) describe a 
quasi-hyperbolic system with at least two co-existing 

attractors, the synchronization procedure is not 

straightforward. 
If the trajectory of one system is on the attractor 

A, and the trajectory of the other one is on the 

co-existing attractor A *, to achieve synchronization, 

one of the trajectories, let us say the one on the 

attractor A,, has to be perturbed in such a way that it 

goes to the basin of attraction b(A ?) of the other 

attractor A 2. Let e(A ,) be the region of the phase 

space in which the perturbed trajectory x(t) evolves. 
The necessary condition for synchronization can be 

given by 

e(A,) nb(Az) ## (5) 

(see Fig. 1). In some cases to fulfill relation (5) a 
strong perturbation which could be difficult to real- 
ize practically is necessary. 

In this Letter we discuss the problems of synchro- 

nization and desynchronization of two quasi-hyper- 
bolic systems using procedure (4) with a small nega- 
tive feedback. Section 2 describes an example where 

____--- . . 
,,” 

relation (5) is fulfilled and two chaotic systems can 

be directly synchronized. In Section 3 we introduce 
the method which under additional conditions allows 
synchronization even when relation (5) is not ini- 

tially fulfilled. Finally in Section 4 we summarize 

our results. 

All numerical computations have been carried out 

using the software INSITE [ 171. 

2. Direct synchronization 

In a geophysical context, the phenomenon of syn- 

chronization is reminiscent of blocking features, in 
which the atmosphere enters into somewhat anoma- 
lous states which can prove remarkably persistent. 

These blocking episodes can occur when baroclinic 
systems in different longitudes become locked in 

some nearly synchronous mode of behaviour. The 

Lorenz system of equations has sometimes been 
proposed as a paradigm for the “chaotic” extratropi- 

cal circulation [18]. Coupling between two Lorenz 
systems might then be interpreted as mutual interac- 
tion between extratropical circulation patterns in two 
different geographical regions having an essential 

control parameter which may be the same or have 
different values in the two regions. 

Fig. 1. Necessary condition for synchronization of two chaotic systems. 
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The concept of teleconnections of this kind, 

achieved though the mechanism of quasilinear 

Rossby wave trains, has both theoretical and experi- 

mental support [19-221. 
We therefore consider a coupled pair of Lorenz 

systems, given by the equations 

x, = -o-x, + aY,, (6a) 

Y, = -x,z, + r,X, - Y,, (6b) 
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Fig. 2. Attractors of uncoupled Eqs. (6): d = 0, v = 10, b = 8/3; 

(a), (b) two co-existing attractors for r = 211; (a) x,(O) = 21.0, 

y,(O) = 2.0, z,(O) = 0, (b) ~(0) = - 21.0, ~~(0) = 0, z,(O) = 0; 
(c) symetrical attractor for r = 219. 
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Fig. 3. (a) Evolution towards synchronized state of coupled Eqs. 

(6): d,_ 3 = 2. D = 10, b = 8/3, r = 21 I (initially both systems 

evolve on attractors shown in Fig. 2); (b) final synchronized state. 

i, =X,Y, -bZ,, (6~) 
i,= -uX*+uY*+d(X, -X2), (64 
&= -X,Z,+r2X2+d(Y,-Y2), (6e) 

i,=X,Y,-bZ,+d(Z,-Z?), (6f) 

where cr, r,,* and b are constants. All state variables 
of both systems are coupled linearly with equal 
coupling strength d; the parameters u and b are 
held fixed at (+ = 10.0, b = 8/3, and r,, r2 are used 

as control parameters. 
For certain ranges of ri, each individual system 

can be on one of two attractors, mirror images of 
each other (Figs. 2a, 2b); for other ranges of rl only 
a single symmetric (butterfly) attractor exists (Fig. 

2c). 
Choosing r , = r2 = 211 .O, we have such a situa- 

tion, and without coupling (i.e. d = 0) we can choose 
initial conditions so that system 1 (Eqs. (6a)-(6c)) is 
on attractor A,, say, whilst system 2 (Eqs. (6d)-(6f)) 
is on attractor A,. 

When we introduce coupling, even at a very weak 
level, we find that, in contrast to the further results 
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Fig. 4. (a) “Noisy synchronization” of Eqs. (6a)-(6c) and (6d)- 

(6f): d, _ 3 = 2, r = 10, b = 8/3, r, = 211. rI = 213; (b) break of 

“noisy synchronization” rL = 215. 

for the Chua equations of Section 3, synchronization 
occurs on attractor A, (Figs. 3a, 3b). In Fig. 3a the 
transient evolution towards the synchronized state of 
Fig. 3b is shown. 

Thus synchronization is normal ( p = q) in cou- 
pled Lorenz systems having identical values of r. 
When the values of r,, rz are different, synchroniza- 
tion, by definition, cannot occur. However, as we 
show in Fig. 4a, for a range r,, r2, a “noisy syn- 
chronization” (i.e. p # q, but 1) x - y 11 < E where E 
is a vector of small parameters) occurs. Indeed there 
is a noisy modulation about synchrony (Fig. 3b) 
which persists in the case illustrated over the range, 
for 211 .O < r2 < 215.0. For larger values of rz the 
system evolves in the neighbourhood of a synchro- 
nized state for significantly long periods of time 
occacionally bursting out of this neighbourhood as 
can be seen in Fig. 4b. This final collapse of syn- 
chronization is associated with the replacement of 
A, and A, by a single symmetric attractor B (Fig. 
2c). 

These results inspire a number of speculations 
about the behaviour in geophysical fluids. Principal 

among these is the case in which synchronization is 

achieved in coupled Lorenz systems, its persistence 
and relative difficulty of desynchronization. This is 
perhaps significant in understanding the effective- 

ness of teleconnections, in which weak signals from 

distant features can apprarently have significant and 
sometimed dramatic effects on other weather sys- 

tems. 

3. Indirect synchronization 

If for a different value of the control parameter a, 
let say a = a,, Eqs. (1) and (2) have different chaotic 

or periodic attractors in different regions of the phase 

space, a small coupling (3) will not result in the 

synchronized state p(t) = q(r) (relation (4) will not 
be fulfilled) and in the pi-q;, i = 1, 2,. . . , n, plots 
we observed open curves or close Lissajou figures 
instead of a straight line. 

In this section we describe a simple method which 
allows us to obtain synchronization of periodic and 
chaotic trajectories evolving on different co-existing 
attractors A, and A, which are close to the single 

chaotic attractor B. 
Let us assume that the “one attractor” (a,) and 

“co-existing attractors” (a,) values of the control 
parameter a are close together. Then the chaotic or 
periodic behaviour of Eqs. (1) and (2) can be syn- 
chronized through the following coupling, 

p =f( P. po7 a(t)>, 

4=f(q, 909 a(t))+%=& (7) 

where 

a(t) =a,, t E [O, r,], 

=a 2’ t> rs7 (8) 

and rS is the synchronization time of chaotic systems 
(1) and (2) (the time in which chaotic systems (1) 
and (2) are synchronized). In the synchronization 
scheme (5) the value of a is first fixed to the “one 
attractor” value a,. When the synchronization state 
p(t) = q(t) is achieved, parameter a is switched to 
the “co-existing attractors” value u2. The equality 
~(7,) = q(T,) ensures the same initial conditions for 
the transient evolution towards one of the co-existing 
attractors so for t > TV we always have p(t) = q(t) 

and the synchronization of trajectories is guaranteed. 
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As an example consider a pair of unidirectionally 

coupled identical Chua circuits whose combined 

equations of motion are 

i=a(y-x-f(x)), (9a) 

jl=x-y+z, (9b) 

;= -py, 

;=C+-U-J(U)), 

(9c) 

(9d) 

5=u-u+w+d,(y-u), (9e) 

tit= -pv, (9f) 

where 

f(5)=b~+~(a-b)(I~+ll-l5-lI). (IO) 

I= x, u and cr, p, a, b are constants. The second 

Chua circuit (Eqs. (9d)-(9f)) is coupled to the first 
one (Eqs. (9a)-(9c)) in such a way that the dif- 
ferences between the signals y and u are 

(d = [0, d,, OIT> introduced into the second circuit 

as a negative feedback. 
In our investigation we considered the following 

parameter values: p = 14.87, a = - 1.27 and 
b = -0.68. In the case of d, = 0 (no coupling) and 
01~ = 10.0 the dynamics of both Chua circuits evolve 
along the double-scroll Chua attractor [14] while for 

CY~ = 8.0 two co-existing Rijssler type attractors are 
possible. 

If we start with the value of a fixed to the 
“co-existing attractors” value a2 the two systems 
(1) and (2) evolve on the different attractors p(t) # 

q(r), where p(r) = [x(t), y(r), z(r>lT and q(t) = 

[u(t), u(t), w(t)lT as can be seen for the periodic 
and chaotic case in Figs. 5a, 5b. When we start with 
“one attractor” value a, and after achieving syn- 
chronization of chaotic trajectories a is switched to 
a2 then trajectories p(t) and q(t) evolve on one 
attractor and are synchronized as can be observed in 
Figs. 6a, 6b. Fig. 6a presents the transient evolution 
from the initial state of Fig. 5b to the final synchro- 
nized state shown in Fig. 6b. In this simulation 
a, = (Y, = 10.0 and a2 = cx2 = 8.0 were taken. Our 
numerical observations show that there is a hystere- 
sis in the dynamical behaviour of the coupled system 
(4) as different behaviour is obtained when the con- 
trol parameter is increased than when this parameter 
is decreased. 

This poses the question whether or not it is possi- 
ble to desynchronize the systems again, and by what 

(aJU 3.2 21 

-3.2 -1.6 0 1.6 
X 

3.2 

Fig. 5. Evolution of coupled Eqs. (9): /3 = 14.87, a = - 1.27 and 

b = - 0.68. In the case of d2 = 0 (no coupling) both systems (Eqs. 

(9a)-(9c) and Eqs. (9d)-(9f)) evolve on different co-existing 

periodic or chaotic attractors; (a) Lissajou figure a = 7; (b) 

unclosed curve (1 = 8. 

means. It is clear that any further parameter changes, 
in which the a = (Y values of both attractors change 
simultaneously, will fail to desynchronize the two 
systems. If, however, we switch the value of one of 
them, a, = (Y, say, to the single attractor value, 
u, = a,, leaving the other at a2 = cx2, the two sys- 
tems must have totally different attractors, B and A z, 
say, and hence are desynchronized. When we switch 
a = (Y back, the second system switches either to 
attractor A, or AZ, according to its position on its 
trajectory at the time of switching (which must be in 
one of the basins of attraction b(A l > or b(A ?) of A, 
or A,). If it switches to A ,, synchronization occurs, 
if it switches to A,, the systems remain desynchro- 
nized. 

We summarise all possibilities in the diagram 
shown in Fig. 7. Thus, the probabilities of returning 
to the original value, a2 = a2 in either a synchro- 
nized or desynchronized state will be proportional to 
the length of time the trajectory on B spends in the 
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Fig. 6. Evolution from desynchronized state of Fig. Sb towards 

synchronization using scheme (7); (Y, = 10, (Ye = 8; (a) transient 

behaviour; (b) final synchronized state. 

basins of A,, A, respectively. 
this is the ratio 

b(B) II b(A,): b(B) n b(A,) 

For long trajectories 

and it follows that, if b(B) n b(A)) is “small”, the 
system is difficult to desynchronize, i.e. it will tend 
to persist in synchronized states. 

4. Conclusions 

Synchronization of chaotic and periodic orbits of 

coupled quasi-hyperbolic systems is straightforward 

to accomplish when the whole system has a single 

attractor. When the system has two or more attrac- 

tors, synchronization may not be possible directly, 
but may be accomplished by shifting the value of a 

control variable temporarily to a value at which the 
system has just one attractor, synchronizing on that, 

and shifting the control variable back to its original 
value. This is a necessary procedure for the example 
of coupled Chua circuits examined in Section 3, but 
for the coupled Lorenz systems of Section 2, syn- 
chronization is achieved, even for very weak cou- 
pling but of all state variables, when the individual 
systems start on different attractors. Once synchro- 

nized, the coupled systems remain synchronized in 
each case, even for changes in the control parameter, 
as long as the control parameter remains the same 
for each of the coupled systems. Desynchronization 
can be achieved by decreasing the coupling stiffness 
d in such a way that a synchronized state becomes 
unstable and adding an external perturbation to one 

Fig. 7. Possibilities of desynchronization of Eqs. (9). 
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of the synchronized systems. In other cases desyn- 
chronization requires a change in the control parame- 
ters to values which are different in the two systems. 
For the Chua case, desynchronization when it occurs 

is immediately total. For the Lorenz system there is a 

range of values of the control parameter, terminated 
at a change in attractor topology, for which noisy 

synchronization persists. In practical application this 
may be as effective as, and quite difficult to distin- 

guish from, genuine synchronization. 

It should be mentioned here that the problem of 

controlling chaos in multiple attractor systems has 

been considered by Jackson and Hubler [23,24]. The 
method of migration control developed by them al- 

lows one to direct the system trajectory to the de- 
sired attractor. Alternatively to our approach syn- 

chronization of chaotic systems initially operating on 
different co-existing attractors can be achieved in 
two stages: (i) by initial migration control of the 

trajectory of one of the systems, (ii) by a standard 
synchronization scheme. Our approach gives a sim- 

pler method as initial control is not necessary. 
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