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Abstract-Our investigations of the dynamics of a simple mechanical system show that (i) the 
structure of the bifurcation diagram seems to be independent of the friction models, and (ii) small 
changes of experimentally estimated parameters like friction and restitution coefficients (within the 
error of estimation) can lead to significant qualitative changes in the system’s dynamics. The last 
observation shows that for such systems it is very difficult (if not impossible) to build mathematical 
models which can qualitatively describe experimental results for all possible values of system 
parameters. Copyright 0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Impact oscillators (i.e. systems that have an oscillating object that impacts frequently with 
some other object or objects) occur in many technical situations. A classical example occurs 
in loose fitting joints which are designed in most mechanical devices to allow for thermal 
expansion. Practical importance and interesting dynamical features have caused the 
growing interest in such systems [l-17]. Initial studies [l-7] showed the rich bifurcation 
behaviour in simple mainly piece-wise linear oscillators excited sinusoidally. Later studies 
[8-U] have concentrated on the so-called grazing bifurcations, i.e. bifurcations observed at 
the bordering state between the impacting and non-impacting motion. In [16] we showed 
the evidence of the II-type intermittency in an experimental impact oscillator. 

In this paper, we consider the simple physical system shown in Fig. 1. The mass ml is 
connected to a vibrator giving sinusoidal force F0 cos of through the spring-damper system 
with stiffness coefficient k1 and damping coefficient cl. The second mass m2 is placed on 
mass m, and its movement is limited by two borders A and B. The motion of mass m2 on 
mass ml is influenced by friction force FT. The purpose of this paper is to analyze the 
influence of (i) different models of friction force, and (ii) small changes of friction and 
restitution coefficients on the dynamics of considered system. 

In [16] we presented a limited experimental study of the system of Fig. 1. The main 
result of [16] was the identification of the II-type intermittency for n = 1.26. One of the 
purposes of this paper is to compare previous experimental results [16] with computer 
model simulations. 

2. MATHEMATICAL MODEL AND ITS PHYSICAL QUANTITIES 

The model to be considered can be described by the following equations: 

$1 = Y29 

j2 = cos T]z - bly, - Yl + fT  - &6(y2 - y.4)~ 

)i3 = Y4, (1) 
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Fig. i. Model of impact oscillator 

where r = S2,t, Szi = j/kl/ml, r = w/2,, -qt = mzgjkI, bl = c,/sZ,~ 6, = c2/S2,, yl = xl/x,,, 
yz = x,, y, = x2/x,,,. y4 = x2, jk = m2/mi+ ii = cz/cI, fT = F+/m2g and g is gravitational 
acceleration. In most of our numerical investigations we took q as a control parameter and 
considered those values of n for which the motion of mass m2 is characterized by impacts. 
Impactless motion and the motion in which the mass m2 is not moving in relation to the 
mass ml is described in [ 171. 

The impact conditions are given by the relation 

where Y = e/x,, and 

.?a+, = 
ml.b( -) + m2~4~-,!. ,_ 

llli + m2 
---3.-R(y;,. ) - y&q ,)” 
ml + m2 (3) 

i,4(A 1 = 
mly2(-, + m2k, m 2 --. R(YZ(-, - YJ,..i)~ 

Wl; + VL2 ml + m, 

where signs (+) and (-) indicate respectively velocities after and before impact. and R is 
the restitution coefficient. 

To describe the dry friction force we considered two different models: a linear model 

tr = Asgn(y: -- .F.~), (4) 

where il is a friction coefficient dependent on the surface in contact 1181, and a nonlinear 
model 

f+ = 
i 

. .._ .2!%‘2!! -..-... + p+ + L( v - 
1 + A,jy:! - yJ’ 

e.2 y4), 
) 

sgn (yz - yjj, is) 

where h, ,u~, i+, and i.? are experimentally estimated constants characteristic for the 
surfaces in contact [ 191. 
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3. NUMERICAL RESULTS 

The bifurcation diagram of system (1) with friction force (4) and typical system 
parameters h = 0.02, r = 0.8, 6 = 0.5, R = 0.6, bl = 0.1 and ,u = 0.693 is shown in Fig. 2. 
For frequency n E [l.O, 1.251 we observe chaotic behaviour with typical windows. At 
n = 1.26 we have crisis in which chaos is replaced by period-four orbit. Although small 
chaotic intervals are present around 7 = 1.62, periodic behaviour is observed up to the 
value r] = 1.67 at which we have Hopf bifurcation of the bifurcation diagram or secondary 
Hopf (Neimark) bifurcation of the system trajectory. As a result of this bifurcation, we 
observe quasi-periodic motion up to the value n = 1.77. For larger values of ?I small 
intervals of chaotic and periodic motions characterize the system’s behaviour. 

For the same parameters but considering nonlinear friction model (5) with h = 0.25, 
~1~ = 0.05, il, = 1.42 and & = 0.005 (these were chosen so that its mean square linearization 
gives linear model (4) with L = 0.02), we obtained the bifurcation diagram shown in Fig. 3. 
The comparison of the two diagrams shows strong sensitivity of the qualitative behaviour 
on the friction model in some pparameter regions. For example, for n E [1.2,1.25] the 
linear model results indicate chaotic behaviour while the nonlinear models show periodic 
motion. In the two diagrams the sequence of main bifurcation is the same and seems to be 
independent of the friction model. 

In experimental systems it is very difficult to accurately estimate the friction coefficients 

7 , --- --I 
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Fig. 2. Bifurcation diagram of system (1) with linear friction force (4): d= 0.02, r = 0.8, B = 0.5, R = 0.6, 
bl = 0.1 and p = 0.693. 

?.4 1.6 1.8 1) 2.0 

Fig. 3. Bifurcation diagram of system (1) with nonlinear friction force (5): & = 0.25, p1 = 0.05, I1 = 1.42, 
& = 0.005, r = 0.8, 6 = 0.5, R = 0.6, bl = 0.1 and p = 0.693. 



‘*, ,/A)> 1L1, h, and A?, and the restitution coefficient K. These parameters are usually given 
with an inaccuracy of a few per cent [20]. For the mechanical system working in or close to 
the chaotic regime these inaccuracies can qualitatively change the system’s behaviour. as is 
shown in Fig. 4(a) and (b), where we repeated previous calculations with a slight change of 
restitution coefficient (now K := 0.62 is considered). The bifurcation diagram of Fig. 4(a) 
was obtained for linear friction force (4) and the diagram of Fig. 4(b) for a nonlinear 
model (5). The comparison of bifurcation diagrams shows that small changes of restitution 
coefficient (less than 4% in our case) have qualitative influence on the system’s behaviour 
in some parameter regions. but the sequence of bifurcations is preserved again. Similar 
effects can be observed if we vary the friction parameters j+, /4!. /L,, AI and I,, 1171. 

Unfortunately, the comparison of current numerical results with the experimental result% 
shown in [16] does not give satisfactory agreement. For the frequency ~1 = 1.26 for which in 
the experiment we observed the II-type intermittency, our numerical results indicate 
another type of chaotic or even periodic motion. As the considered system is very simple 
WC can argue that the observed inaccuracies are caused hy the inabilities of accurate 
estimations of the friction and restitution coefficients rather than by disadvantages in ou1 
mathematical model. This shows that it is impossible (at least, very difficult as it requires 
new more advanced friction and impact models) to have a rncchamcal system with chaotic 
motion for which there exists agreement between experimental and model simulations. 

I .-_ .__-_ .I- _.-__. _ . . _- , _ ..___-. __ __ 
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Fig. 4. Bifurcation diagram of system (1) I ~2 0.8, ?I = 0.5, b , = 0.1, p = 0.693 and H 7 0.62, (a) linear hction 
force (4): i. = 0.02. (b) nonlinear friction force (5): p,, = 0.25, p1 = 0.0~5, A1 = 1.42 and & = 0.005. 
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4. CONCLUSIONS 

Our investigations confirm that a rich bifurcation structure and chaotic behaviour are 
typical for mechanical systems with dry friction and impacts. The analysis of bifurcation 
diagrams shows strong sensitivity of qualitative behaviour on the small changes of system 
parameters such as the friction and restitution coefficients. As both these parameters are 
estimated experimentally with an error of a few per cent [20], our observations show that it 
will be very difficult or even impossible to obtain good agreement between experimental 
and numerical results for all system parameters. Despite this sensitivity, the sequence of 
bifurcations seems to be independent of the friction and restitution coefficients as well as of 
the model of dry friction. 
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