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Abstract

‘When during the operation of rotors supported in gas bearings their rotational velocity reaches a sufficiently high value, the loss of steady-state
stability occurs. This instability is caused by the loss of damping properties of the gas film, which leads to self-excited vibrations. These
vibrations are the basic obstacle to a widespread application of gas bearings.

The phenomenon of self-excited vibrations can be avoided by introducing an elastic supporting structure between the bearing bushes and
the casing, characterised by properly selected stiffness and damping coefficients. In practice such a structure can have the form of anexternally
pressurised gas ring.

In this paper we demonstrate, on the basis of selected examples, which ranges of the values of stiffness and damping coefficients of the gas
ring make it possible to retain steady-state stability at practically any rotational velocity of the rotor. We also show a design of the ring
structure, especially of its feeding systern, which ensures the required values of stiffness and damping coefficients (with regard to the stability).
Our investigations have been carried out by means of a numerical simulation method with the use of a mathematical model of the gas bearing,

verified already many times.
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1. Introduction

Gas bearings in comparison with o0il bearings and rolling
bearings exhibit numerous indisputable advantages: they
operate without noise, they have a low moment of friction,
they do not generate heat and are not subjected to wear. These
advantages of gas bearings are due to the fact that the surfaces
of the journal and bush are separated by a gas (mainly air)
layer characterised by a very low (when compared with oil)
viscosity. Gas bearings retain their advantages at high rota-
tional velocities which exceed significantly the maximum
rotational velocities admissible for oi1 bearings and rolling
bearings.

The main disadvantage of gas bearings, which prevents
their widespread applications, are the self-excited vibrations
occurring when a sufficiently high rotational velocity is
achieved.

The phenomenon of self-excited vibrations is manifested
by the fact that at a certain boundary value of the rotational
velocity, the steady-siate stability is lost and the bearing jour-
nal begins to move along the trajectory whose radiusincreases
until the journal reaches its stable boundary cycle. At the
same time the frequency of the self-excited vibrations is equal
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to the half of the angular velocity—the so-called ‘‘half-
whirl’’. When the boundary rotational velocity is exceeded
even by a few per cent, the radius of the boundary cycle is
bigger than the radial clearance of the bearing, and thus the
phenomenon of self-excited vibrations leads fast to the jour-
nal-bush contact and, as a result, to the destruction of the
bearing.

As early as in 1965 the investigations (numerical simula-
tions) carried out by Lund showed that the boundary rota-
tional velocity of the rotor can be increased by an intreduction
of a system of linear springs and viscous dampers between
the bushes of the gas bearings and the casing [1]. This phe-
nomenon was also confirmed during later laboratory experi-
ments conducted by Kerr [2] and Kazimierski and Jarzecki
[31. Those researchers used rubber rings between the bearing
bushes and the casing. Kerr’s as well as Marsh’s 4] labo-
ratory experiments also showed that the ase of rubber rings
reduced the width of the region of self-excited vibrations and
that there was a (theoretical) possibility of the rotor operation
over the unstable region.

Czolczytiski’s numerical experiments [5-7] have shown
that an introduction of the isotropic system of linear springs
and viscous dampers between the bearing bushes and the
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casing brings about only a slight increase in the boundary
rotational velocity (the success of the above-mentioned
researchers should be evaluat=d as moderate), but it leads to
a limitation of the range of rotational velocities at which self-
excited vibrations occur. The main effect of his works was
that he demonstrated that a proper selection of the values of
stiffness and damping coefficients of the elastic bush support
leads to a vanishing of the unstable regions, that is, to an
elimination of the phenomenon of self-excited vibrations.
Further investigations carried out by Czolczyriski and Mar-
ynowski have provided data on the ranges of stiffness and
damping coefficients, which make it possible to avoid the loss
of the steady-state stability of symmetrical rotors supported
in self-acting bearings [8] and in externally pressurised bear-
ings [9], as well as of non-symmetrical rotors [ 10}. During
these investigations an original method for a determination
of the values of stiffness and damping coefficients of gas
bearings was used [7,11]. This method can also be used for
externally pressurised bearings (as opposed to the small per-
turbation method which can be used only for self-acting bear-
ings [12}).

The present paper presents a practical solution of an elastic
bush support of gas bearings, whose stiffness and damping
coefficients fall within the required ranges (in the light of the
results included in Refs. [8-10]).

What is proposed here is an external gas ring surrounding
the bearing bush. This ring must be of course externally
pressurised because the bearing bushes do not rotate ard thus,
a dynamic load carrying wedge does not occur here.

During our numerical simulations we tested several gas
rings which differed in terms of the boundary conditions
imposed on the gas film and in terms of the feeding system
structure.

2. Rotors supported in gas bearings—our object of
interest

A possibility of eliminating self-excited vibrations is
shown here on the example of the rigid, symmetrical rotor
supported in two gas bearings with flexibly mounted bushes
(Fig. 1).

The rotor parameters are as follows:
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Fig. 1. Symmetrical rotor supported in two flexibly mounted gas bearings.

mass m* =228.0kg (m=0.42)

moment of inertia B* =68.7 kg m?> (B=42)

distance between the bearings 2I* = 1.9 m (2/=34.6)
The parameters of the bushes (joined by a common base):

mass my =65.0 kg (m; 0.12)

moment of inertia Bf =58.8 kg m? (B,=36)

distance between the springs and dampers 2i, =2/.=2!
The parameters of the bearings:

lengthL=0.11m

radius R, =0.055 m

radial clearance ¢; =30X10"%m

gas viscosity u=18.2X 10" %kgm~' s~! (air)

We are investigating self-acting and externally pressurised
bearings. The feeding system of the externally pressurised
bearings consists of 16 feedholes, located in two rows in 1/
4 and 3/4 of the length of the bearing. The radius of the
feedhole is ry; =0.15X 1073 m, and the supply pressure
pg =0.7%10° Pa (dimensionless supply pressure po=p3/
pa=T.

The parameters of the bearings create the basis for the
computations of dimensionless parameters of the rotor and
the bush (quoted above in brackets), according to the for-
mulae included in the Appendix. These parameters are also
the basis for a determination of the relation between the
dimensional and dimensionless values of stiffness and damp-
ing coefficients and of the force.

The bearings are loaded by the rotor weight 2F =2200 N,
which means that the dimensionless loading force acting on
the journal of each bearing is equal to F,=3.5. The external
pressurized bearings transfer this force at the relative eccen-
tricity €=0.35. (The exact value of € depends of course on
the value of the rotational velocity.) The linearised equations
of the rotor and bush motion (which are easy to be derived)
are meationed in Refs. [7-9]. In these equations, dynamical
properties of the gas film are represented by four stiffness and
four damping coefficients.

3. The ranges of stiffness and damping coefficients of
the elastic support which allow to avoid self-excited
vibrations

Fig. 2 shows the stability maps of the considered systems
with externally pressurised bearings for two selected values
of the stiffness coefficient of the elastic support K, and various
values of the damping coefficient C;, (on the horizontal axis).
On the vertical axis, the values of the dimensionless rotational
velocity A of the rotor are represented.

When K, =22 (thin lines), there are three regions in which
self-excited vibrations occur. For C, < 1.10r C, > 2.5 (onthe
left-hand side of the point A,, or on the right-hand side of the
point B,), at a sufficiently high rotational velocity A, the
loss of the stability of conical modes of vibrations occurs
(thin dotted lines). Irrespective of this, a continuous region
of self-excited vibrations of cylindrical modes of vibrations
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Fig. 2. Stability thresholds of the rotor suported in externally pressurized
bearings; m=042, 3=42, m,=0.12, B,=36,p,=7, F,=3.5.

(thin solid lines) existing for all the values of C, can be
observed. Though all these unstable regions are limited, an
attempt to exceed them may result in the destruction of the
bearing.

The situation changes with the stiffness coefficient of the
bush support K,=14 (thick lines). The unstable regions of
the conical modes are decreased (A,, —A;; and B, — By,
thick dotted lines), and, which is most important, the contin-
uous unstable region of cylindrical modes is divided into two
subregions—self-excited vibrations with the cylindrical
modes may occur only for C,<0.85 or C,>35 (on the left-
hand side of the point C,4 or on the right-hand side of the
point D, thick solid lines). It means that for K= 14 and
0.85 <€, <2.9, between the points C,, and By, there is not
any unstable region and the self-excited vibrations do not
occur, irrespective of the value of the rotational velocity A.

Fig. 3 exhibits the boundaries of unstable regions for cylin-
drical and conical modes of vibrations as the functions of the
parameters C,, and K|, of the elastic bush support. The bound-
aries that can be seen in Fig. 2 are marked here. The region
in which both cylindrical and conical modes of vibrations
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Fig. 4. Stability map and always stable loop—self-acting bearings.

remain stable irrespective of the value of the rotational veloc-
ity is hatched. This region has been called an *‘always stable™
loop.

In Fig. 4 the analogous boundaries of unstable regions and
an ‘‘always stable”” loop for a rotor supported in self-acting
bearings are shown. More detailed data about an influence of
different parameters of the system (F,, m, my, B, B;, py) on
the size of *‘always stable’’ loops can be found in Refs. [8-
10].

4. Mathematical model of the air ring

The basis of the mathematical model of the gas ring is the
Reynolds equation describing a pressure distribution in the
gas film [13,14].
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In the mode! of the air ring, the gas film is divided into
axial and circumferential directions. For each grid point i, j,
the Reynolds equation may be written after a few transfor-
mations in the following form of finite differences:
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Fig. 5. Air ring with chamber feeding system: 1, ciiambcer; 2, casing; 3,
movable bush; 4, journal; 5, gas film of the bearing; 6, gas film of the air
ting.

with
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The right-hand side of Eq. (2) differs from zero only for
the mass source points (feedholes) i,, j,. To solve numeri-
cally this equation, the alternating direction implicit scheme
(ADI) given in detail in Refs. [ 15,16] was adopted.

The way of modelling the gas flow through the chamber
feeding system described below was based on the model of
the so-called high stiffness bearing { 17-20] and it is its sim-
plified version.

A gas ring with a chamber feeding system is shown in
Fig. 5. The gas of pressure p§ flows through the orifices with
the cross-section area Ay =75 to the chambers of the volume
V, and then through the feedholes of the radius ry, to the gap
between the casing and the bearing bush.

To describe the mass flow through the chamber feeding
system, it is necessary to formulate:

1. A simplified relation between the mass flow through a
feedhole of the radius r,,, and the gas film pressure dis-
tribution surrounding the feedhole.

2. A relation between a mass flow and a pressure drop for
the feedhole of the cross-section A, = 21rg,h,.

3. A relation between a mass flow and a pressure drop for
the orifice of the cross-section Ay =72,

4. Equations of continuity using relations specified above
(points 1-3).

For Point 1, near a source point (i,, j;) the Reynolds equa-
tion may be reduced to a Laplace equation

3)

3%Q., 0.,

1fe lgl=

3¢+ a2 0 )
with unknown @, =P%;, {13,21,22]. The solution of this

equation in the finite difference approximation can be written
in the form:
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Assuming, that p, is the pressure in the source point and using
the identity
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Eq. (5) can be written as

(mymm)? =0+ v;;;‘FK, 9)
2

For Point 2, the real mass flow through the feedhole can
be written as

1y = Vit (10)
with the critical mass flow

o 2k _ pix=1/ny pi/
My = Ay Py ‘/W—To-(_x-—-—l) (i-8 B (11)

The coefficient v, = v, (m,, B) can be estimated in simpli-
fication by means of the Bendenmann ellipse [21]:
(m—B) 2 2
—— -t pi=1 12
a—py T (12)
The parameter 7, is a theoretical variable which is related
to the effective pressure 7, by means of the formula
(1-m)=K(1-m) 13)
The coefficient K= K(B,4,¢2,h12,p0. V1, T3) is determined
experimentally in Ref. [15] as
K=0.16 +0.0002Re for Re <2000
K=0.685+0.155y—0.19y* for 2000 < Re <4000,
(y = (Re—3000)/2000)
K=0.715 for Re > 4000
where the Reynolds number is given by

2k
Re =B+ ey aric,Hy, o, (14)
8 “m '« TaC2i1a,,5, Po

Estimating 7, from Eq. (12) and =, from Eq. (13), the
equation

[1—K(1-B)(1-V1~ uﬁ)]zn.,wo=é+”;é"rx. (15)

can be sbtained from Eq. (9), with the unknown v,.
For Point 3, the mass flow rate through the orifice can be
calculated by means of the experimental formula [21]:
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ve==t=Cop(my) (16)
my

where
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for B< my< 1 and

v(mg) =1 (19)

for my< .

The experimentally determined discharge coefficient
Cy=Cy(my) is given in Ref. [16] as C,=0.85—
0.15m,—0.173.

For Point 4, as a consequence of the bush motion, the mass
flows n, ni1y change with time and cause increases of the
pressures p, in chambers:

PP V . .

_A-t- N7, =My — My (20)

The subscript 0 denotes initial values of the pressure.
Substituting
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Eq. (20) may be obtained in the form
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Dividing Eq. (23) by p, gives finally the equation:
\4
VeAy— M ATy = (g — Tg0) =—FK; (25)

At

with unknown 774 (note, that v, is a function of 7). The
subscript 0 denotes the initial value of the pressure ratio.

Eq. (25) produces, together with Eq. (15), a system of
two non-linear equations with unknowns =, and »,. The
solution of this system is not an easy task. It is done by the
method of successive approximations.

In our investigations we also used gas rings with a direct
feeding system, as those shown in Fig. 6. The mathematical
model of such a ring is of course based on the Reynolds Eq.
(2) and on the equations describing the relation between the
mass flow through a feedhole of the radius rg, the gas film
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Fig. 6. Air ring with direct feeding system.

pressure distribution surrounding the feedhole, and the pres-
sure drop for a feedhole of the cross-section Ay =2mvh;.
These equations have been written above as Eqs. (4)-(15)
with p; =p,, i.e. my=1.

The mathematical models of both the rings provide data
on the components of the loading force in the direction of the
axisxand y:

L/IR: 2m

F,=p.R: I JPcos 0dod¢

o 0
LiIR2 2w

Foy=p.R2 I J' Psin 0d0dg (26)

0 0
at the gap h, defined by the equation:
hy=c,(1—ecos (6—6,)) (27)

Models have been used in computing the values of stiffness
and damping coefficients of gas rings by means of the method
described in Refs. [7,11].

In this mathematical model of the system, the rings are
represented by matrices of these coefficients. The matrices
multiplied by the bush velocity components X, and y, and the
bush displacement components x; and y,, from the static equi-
librium position inform us about the values of dynamic
responses of the ring:

wl-le el ]

> = P+ 28

[SF zy. C2l C22 () KZI KZZ ( )
It should be added, however, that during our investigations

we found that the values of the coupling coefficients C;,, C,),
K2, K, were negligibly small.

5. Externally pressurised air ring as the flexible support
of the bush
5.1. Air ring with the direct feeding system

In our first investigations we made computations of the

stiffness and damping coefficients of the air rings with the
simplest, direct feeding system (the same as the feeding sys-
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Fig. 7. Damping coefficient of air ring with direct feeding system: (a) R, =0.065m, c;=30X 10~°m; (b) ro;=0.15X 107> m, c;=30X 10~% (¢) R,=0.065

m, rp=0.15X 10" m.

tem of the bearings). The length of the ring L=0.11 m was
equal to the length of the bearing (Fig. 6).

Figs. 7 and 8 show the values of the damping coefficient
C), and the stiffness coefficient K, of the ring (in the plane
along which the force F, acts) for different values of the
radius 7y, of the feedholes, the ring radius R, and the clearance
¢, between the bush and the casing. As one can see, the
changes of these basic parameters do not exert any significant
influence on the value of the stiffness coefficient, orespecially
on ihiat of the damping coefficient. As opposed to the arbi-
trarily selected constant values of the stiffness and damping
coefficients K|, and C, of the springs and dampers which
support the bush shown in Fig. 1, the stiffness and damping
coefficients of the gas rings depend on the frequency of vibra-
tions v of the bush, represented on the horizontal axes in
Figs. 7 and 8. When the eccentricity ratio between the bush
and the casing is small (in our examples do not exceed 0.2),
the coefficients C,; and K3, (in the plane perpendicular to
the plane along which the force F, acts) are similar to C,,

kI A k"
20 20,

and K,,. Values of the cross-coupling coefficients C,,, K,
Cs; and K, are small in comparison with C;, and X,,. More-
over, the changes of the rotational velocity of the rotor, in the
considered range of A, cause so small changes of the natural
frequencies », that the air ring may be considered as the
(almost) isotropic support of the bushes, like the springs K,
and dampers C,.

As one can see, the coefficient C,;, which is to play a role
of the cocfficient C,, of the elastic bush support, has the value
of magnitude of 1 only for low frequencies of vibrations.
When the frequency of vibrations v increases, this coefficient
decreases rapidly. For » = 34 (sclf-excited vibrations of the
investigated system have the frequency of this magnitude),
the value of C,, is already smaller than 0.3. Such a damping
coefficient does not ensure an elimination of self-excited
vibrations—compare with the drawings of ‘‘always stable’
loops (Figs. 3 and 4). The stiffness coefficient K;, hasavalue
in the range 13-15. It could play a role of X, in the case of
externally pressurised bearings (Fig. 3), but only if associ-
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Fig. 8. Stiffness coefficient of air ring with direct feeding system: (a) Ry=0.065m, c,=30X 10~°m; (b) ro;=0.15X10"*m, c2=30% 10~%; (¢) R,=0.065

m, r;=0.15x10"3 m.
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ated with the damping coefficient C,( = Cy;) =2. The values
of the stiffness and damping coefficients C,, and K, of the
airrings (in the plane perpendicular to the plane along which
the force F, acts) are close to C,, and K, and therefore their
diagrams are not presented here. This remark concerns all the
results presented below as well.

Aiming at an increase in the value of the damping coeffi-
cient of the gas ring, we have modified the boundary condi-
tions of the gas film by an introduction of rubber seals at both
the ends of the ring, which is shown in Fig. 9. Fig. 10(a)
presents the coefficient C;; as a function of the frequency of
vibrations of the bush for four different values of the angle
¥. (compare Fig. 9) which defines the size of the seals. The
ring parameters are as follows: L=0.11m, R,=0.065 m,
162=0.15%X10"3m, ¢, =30 10~%m. The representation of
C,, and K, corresponding to <y, =0 (without seals) has been
transposed from Figs. 7 and 8. As can be seen, the seals whose
task was to hinder the air flow along the ring axis have indeed
caused an increase in the values of the coefficient C,,. For
instance, for » =4 from C,, =0.29 for §,=010 C,, =0.67 for
¥.=2/3X 2. This last result would fall inside the *‘always
stable’” loop (compare Fig. 3 and Fig. 4), if not for the fact
that an increase in the damping coefficient is accompanied
by an increase in the stiffness coefficient K;,. As can be seen
inFig. 10(b), this coefficient assumes the values in the range
20-30 for y,=2/3 X 2w, and hence above the ‘‘always sta-
ble’” loop.

As a further attempt we tried to support the bearing bush
in gas rings with longitudinal rubber baffles which reduce a
circumferential air flow (Fig. 11). The gas film of the ring
with the parameters: L=0.11m, R,=0.065, r;;=0.15
X 10~3 m was divided by us by means of these elastic baffles
into n, =4, 6 and 8 sectors. In each sector there was 1 feedhole
located half way down the length of the ring. Fig. 12 presents
the values of the coefficients C,, and K, for n,=8 and for
three different values of the radial clearance c¢,. As can be
easily seen, the values of the coefficient C,; again lie below
the required region C;, > 0.5, and the stiffness coefficients—
over the required K;; < 10-15.

Fig. 13 shows how the values of the stiffness and damping
coefficients are affected by the change in the number of the
sectors n,.. Our further defeat can be seen in the fact that when

Fig. 9. Air ring with rubber seals (1).

Cyy
3
ce 7, =0.25-27
25 -7, =0.50-2%
—1,=0.672%
2 e 1=0

20
5..
A O
[+] 5 10 15 20
14

Fig. 10. (a) Damping and () stiffness coefficient of air ring with rubber
seals.
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Fig. 11. Air ring with longitudinal rubber baffles (1).

for n, =4 the coefficient Cy, 0.5 (v =4), then the coeffi-
cient K, exceeds 20—we are again outside the *‘always
stable’’ loop.

5.2. Air ring with the chamber feeding system
Since it has been found that the air rings with the dixect

feeding system do not have such stiffness and damping coef-
ficients which ensure an elimination of self-excited vibra-
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Fig. 12. (a) Damping and (b) stiffness coefficient of air ring with longitu-
dinal rubber baffles; 7, =8.

tions, we have undertaken investigations of the ring with the
chamber feeding system, which is shown in Fig. 5. We have
assumed that for this ring L=0.11m, R,-0.065m,
p§=0.7X10° Pa and that the feeding system consists of two
rows of feedholes, eight feedholes in each row.

In the first experiment we investigated the influence of the
volume V of the air chambers on the values of stiffness and
damping coefficients. We have assumed that the radius of the
feedholes rg=1.0%X10"3 m and the orifice radius
74=0.15% 1073 m. The volume of the chamber is expressed
by the formula:

V=mrih, (29)

and as the constant value r,=5.0X 103 m)radius of the
chamber) is assumed, it is proportional to the chamber height
h,. Fig. 14 shows the values of C,, and K;, as a function of
the frequency of vibrations v for four different values of the
chamber height A, =3, 6,9 and 36 X103 m.

While in the rings with the direct feeding system, the lower
the frequency of vibration v, the greater the values of the
coefficient C;, were, then with the chamber feeding system
there is an extremum of the function Cy, (v). For low values
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15 20
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Fig. 13. (a) Damping and (b) stiffness coefficient of air ring with longitu-
dinal rubber baffles; c;=30X10"¢m.

of v (below the extremum of C, ), the value of C,, decreases
rapidly, even below zero.

It is easy to find the cause of this so far unobserved phe-
nomenon. At sufficiently smail values of the frequency v and
sufficiently small volumes v of the chambers, significant
changes of the pressure in the chambers occur during the
motion of the bush. In the critical case it Ieads to the phenom-
enon of the pressure resonance described in the literature as
the *‘pneumatic hammer”* [23] and as a result to the loss of
stability. For &, <3 X 10~3 m, this phenomenon could occur
at the frequencies of free vibrations of the rotor under inves-
tigation. For sufficiently high values of » and A,, the motion
of the bush is so fast that during one period no significant
changes in the pressure p, in the chambers occur—the air
wili not ‘manage’’ to flow into or out of the chamber in such
a quantity which would cause any significant change of the
pressure. The value of the coefficient C,, for v =4-5liesover
the boundary of the “*always stable’” loop which is approx.
C,=0.5. The fact that these values of the damping coeffi-
cients are accompanied by the values of ihe stiffness coeffi-
cient K, =6-8 {for v =4-5) is very important as it means
that we are finally inside the **always stable’’ loop!



108 K. Czolczyriski et al. / Wear 199 (1996) 100-112

0 S 10 15 20

L L i

5 10 15 20

Fig. 14. (a) Damping and (b) stiffness coefficient of air ring with chamber
feeding system; re;= 1.0 103 m, r,=0.15X10"3 m,

Our passion of researchers has made us investigate the
possibilities of influencing the values of K, and C,, by
changing other parameters of the ring, especially those of the
feeding system. Fig. 15 shows how the values of these coef-
ficients are affected by the change in the radius of the feedhole
roz (ra=0.15X10"2 m, ¢,=30X10~% m, A, =6.0%10~3
m). In this figure we also present the values of C;, and K,
of the ring with the direct feeding system transposed from
Figs.7 and 8 (R,=0.065m, ¢,=30X1075, ry,=0.15
%1073 m) marked as the thin dotted line. As can be seen,
starting from re; =7,=0.15X10"% m the damping coeffi-
cient increases as the radius of the feedhole increases (except
for the ‘‘pneumatic hammer™ region). We think that the
reason for this phenomenon is the fact that while for the ring
with the direct feeding system the air of the same pressure
Po=1 left each feedhole, then in the case of the ring with the
chamber feeding system, pressure in each chamber on the
circumference is different. Fig. 16 presents distributions of
the pressure p, in the air chambers of the ring under investi-
gation, for different values of rg; in the static equilibrium
position. The force F, loading the ring causes a displacement
of the bush in the direction of chamber 1. When the feedhole

Cn
2
a
@ -8-1,, =0.15-10°m
~@-1,, =0.50:10°m
1,5 W1y =1.0010°m

—A ry #2.0010°m

° 10 15 20

Fig. 15. (a) Damping and (b) stiffness coefficient of air ring with chamber
feeding system; A, =6.0X 10> m, r,;=0.15X 10~3 m.

No. 1 is covered by the bush, then the air stream 3, coming
from this chamber is the least. Hence, the pressure p, in this
chamber is the highest. The opposite situation takes place in
the case of chamber 5: the bush is at a maximum distance
from it, which causes the value of the air stream coming from
this chamber to be the highest, and consequently the pressure
P, is the lowest. For 74;,=0.15X 1072 m the values of the
pressure in the chambers are closest to the value of the supply
pressure po=7. As the ry, increases, the pressures in the

P
08

0,7,
0,6

A 7,=0.1510°m

0,2 * 1y=0.5010°m

0,1 ® 7,=1.00-10°m
R ¥ 1,=2.0010"m
" 2 3 4 5 6 7 8

chamber
Fig. I6. Static distribution of pressure p, in chambers; ry=10">m,
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02 *1g=030-10"m
0,1 ©7,=0.60-10°m
° . v/,=1.0010°m
1 2 3 4 5 6 7 8
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Fig. 17. Static distribution of pressure p, in chambers; rg,=1.0X10"*m.
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Fig. 18. (a) Damping and (b) stiffness coefficient of air ring with chamber
feeding system; i, =6.0X 1073 m, r,=1.0X10"%m.

chamber decrease, and the differences between them become
greater and greater. This phenomenon is followed, as we have
already mentioned, by an advantageous increase in the value
of the damping coefficient C,, and an advantageous decrease
in the stiffness coefficient K. For r;,=2.0X 1073 m and
v=4-5, we observe (Fig. 15) C;,; =09 and K;; =4 — such
values of Cy; and K, ensure a static operation of the rotor
supported in both the externally pressurised bearings as well
as in self-acting bearings.

Another parameter of the feeding system that affects the
cocfficients Cy; and K, is the radius 7, of the orifice through

-+ 0,=3010°m
---c,=40-10°m
——,=5010°m

0 S p10 15 20
Fig. 19. (a) Damping and (b) stiffness coefficient of air ring with chamber
feeding system; #, =9.0X 1072 m, 7, =1.0X 1073 m, r,=0.15X 10" > m.

which the air enters the chamber. Fig. 17 shows the distri-
bution of the pressure p, in the chambers (as in Fig. 16) for
the ring with rp,=1.0%X1073 m, h=6.0X10"> m and
¢;=30.0% 10" m and with the orifice radii r;=0.15, 0.30,
0.60and 1.0X 10~ >m. Ascan be seen, when the orificeradius
ry increases, aiming for the value ry,, the pressures in the
chambers aim for the value of the supply pressure py=7,
which is obvious. The effect of this phenomenon can be seen
in Fig. 18, where the coefficients C,; and K; are shown. For
ra=re;=1.0X1073 m, the ring has the same damping and
stiffness coefficients as the ring with the direct feeding system
and r5,=1.0X 10~3 m. A decrease in the value of r, causes
adecrease in the value of the damping coefficient, especially
in the region of the ‘‘pneumatic hammer’* and near it, but
these changes are small. What matters is that the decrease in
the radius ry brings about a significant (advantageous!)
decrease of the damping coefficient K;, and *‘introduces’’ us
inside the *“always stable’’ loop.

The last parameter whose influence on stiffness and damp-
ing cocfficients we investigated was the radial clearance c,.
The results of the investigations carried out for the ring of
ra=015%X10"%m, r,,=1.0X%10"> m, A, =9.0%X10> m
and ¢, =30, 40 and 50 10~ m are to be found in Fig. 19.
The analysis of the results is very simple: the increase in the
radial clearance brings about the decrease in both the damping
coefficient (which is disadvantageous) and the stiffness coef-
ficient (which, in turn, we consider advantageous). For the
system: rotor-bearings—air rings investigated by us, we con-
sider the ring with the least value of the radial clearance
¢2=30x10"%m to be the optimum one.
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Fig. 20. Eigenvalues of the rotor with bushes supported in dampers C,=2
and springs K,=22.

6. Stability of the rotor supported in externally
pressurised gas bearings with bushes mounted in air
rings

Finally, we present the results of the investigations of the
steady-state stability of the rotor whose parameters are given
in Section 2 and which is supported in externally pressurised
bearings.

‘When the bearing bushes are mounted flexibiy, the system
under consideration has eight degrees of freedom, hence its
mathematical model (a set of differential equations of
motion) has eight eigenvalues:

A=ntjv; i=1,..4 (30)

The free vibrations of the system occur with the frequencies
equal to the imaginary parts »; of the eigenvalues. As the
system is symmetrical, the main modes of vibrations are
cylindrical ones (the displacements of both the bearing jour-
nals are equal and are in the phase) or conical ones (the
displacements of the bearing journals have the same values,
but they are in the counterphase).

The signs of the real parts of the eigenvalues inform us
about the stability of the static equilibrium position of the
system~—when the sign of the real part is positive, it means
that the free vibrations of the frequency equal to the imaginary
part of this eigenvalue have been self-excited.

‘When the rotational velocity A of therotor is small enough,
then the real parts of all eigenvalues are negative. If a certain
value of the Acg; is exceeded, the sign of one of the real parts
of eigenvalues to which (in our rotor) the vibrations with
cylindrical modes correspond changes into a positive one—
aloss of the static equilibrium position and self-excited vibra-
tions occur. If these vibrations do not destroy the bearings
soon, once a further critical value Acg, is achieved, aud the
self-excited vibrations vanish. The real and imaginary parts
of the four basic (lowest) eigenvalues, to which the vibra-
tions of cylindrical and conical modes correspond are shown
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Fig. 21. Eigenvalues of the rotor with bushes supported in air ring with
chamber feeding system.

in Fig. 20 for the case when a system of linear springs with
K,=22 and dampers with C,=2 is introduced between the
bearing bushes and the casing. The values of K, and C, have
been chosen purposely beyond the ‘‘always stable’” loop
from Fig. 3. The boundaries Acg, and Acg, are marked in
Fig. 2.

When the system of springs and dampers with such unfor-
tunately selected parameters is replaced by air rings with a
chamber feeding system, the vibrations are not self-excited.
Fig. 21 shows the representations of real and imaginary parts
of the basic four eigenvalues of the system, in which the
bearing bushes are mounted in the rings with L=0.11m,
R,=0.065m, ry=015%X10"3 m, rep=10Xx10"% m,
n=50X10">m, 1, =36.0X10"% m and ¢,=30.0% 10~
m. As can be seen, in the whole investigated range of the
rotational velocity A, the values of the real parts of all the
eigenvalues are negative, which means that the static equilib-
rium position of the system is stable.

According to our expectations, the values of stiffness and
damping coefficients Cy;, Cz, K, and K, of the ring are
inside the ‘‘always stable’” loop. The change in the frequency
of vibration O (1.6 < » <3.15) cause the changes in the stiff-
ness and damping coefficients in the range from 0.9 to 1.05
for Cy;, C,,, and in the range from 3.5 to 5.9 for K;,, K>,.
These ranges of the coefficients are marked in Fig. 3 as the
black rectangle.

7. Conclusions

There is a possibility of eliminating self-excited vibrations
of the rotor supported in gas bearings. It can be achieved by
mounting the bearing bushes in air rings which perform a
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role of an elastic support for these bushes. Air rings with a
direct feeding system (the easiest one to obtain) have too
high stiffness coefficients and too low damping coefficients
to play a role of eliminators of self-excited vibrations. Suit-
able values of the stiffness and damping coefficients can be
achieved with rings with a chamber feeding system. In spite
of the positive result of our investigations, the fact is that wz
have not yet managed to design a ring with a damping coef-
ficient higher than 1, retaining the stiffness coefficient lower
than 10, which would be an ideal solution. We are sure,
however, that it is possible. The construction of such a ring
will be shown in our future works.

Appendix A. Nomenclature

Ay, A areas of cross-sections of orifice
(4), feedhole (;) (m?)

B inertial moment of rotor

B, inertial moment of joint bushes

8 dimensionless constant

Ca dimensionless discharge
coefficients in orifice ()

Gy damping coefficients of gas film

C, damping coefficient of elastic
support

c radial clearance of bearing (m)

FK,, FK,, FK; dimensionless constants

F, static loading of bearing

hy, hy local film thickness, shaft bush, and
bush casing, mh,, height of
chamber (m)

Hi(=h/c) dimensionless film thickness shaft
bush

Hy(=hy/c;) dimensionless film thickness bush
casing

K; stiffness coefficients of bearing

K, stiffness coefficient of elastic
support

! a half of the distance between
bearings

lc a half of the distance between
dampers

Ik a half of the distance between
springs

L length of bearing

m mass of rotor

my mass of joint bushes

m, reduced mass of the rotor

g, My mass flows through orifice (4),
feedhole (,) (kgs™!)

g, By critical mass flows through orifice

(a), feedhole () (kgs™")
ny number of gas film sectors
P(=plp,) dimensionless pressure in the gap
shaft bush

Pa
Po
Pe

P
(=P
Q
Ry
R,
R

Re
Tor

To2

(-6 )

L g

Vay Vi

m(=p1/po),
wc( =pe/p2)'
7{=pJ/p,)
(= /2M)
(¢

w

Appendiz B

m

atmospheric pressure (N m~2)
supply pressure

effective pressure in annular orifice
(Pa) )

auxiliary theoretical pressure (Pa)
dimensionless variable

mean value of O

radius of bearing (m)

radius of ring (m)

universal gas constant (J kg~!
K™

Reynolds number

radius of plain feedhole of bearing
(m)

radius of plain feedhole of air ring
(m)

radius of orifice (m)

radius of chamber (m)

constant gas temperature (K)
time (s)

volume of chamber (m?®)

critical pressure ratio

isentropic expansion index

angle of seal (rad)

increment in time (s)

gas viscosity (Nsm™")

relative eccentricity ratio shaft bush
dimensionless coordinates of gas
film, related to R,

viscosity (Nsm™~?)
dimensionless bearing number
complex eigenvalues
dimensionless mass flow rates
dimensionless mass flow through
orifice (4), feedhole ()

pressure ratios

dimensionless time

angular frequency of vibration (rad
s7h

angular velocity of shaft (rads™')

All the dimensionless parameters which are used in the paper
are related to the bearing parameters:

2
cr {Nsm"]=%€ij K}[Nm']=

2Ry
<
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220 B¥ (kgm?] = 4—’10—)%&3

w[rads"']— puc? A v* [rad s"]=—zv t[s]—gAr

1
P {m] =Rl F*—F
PR

Referernces

[11 J.W. Lund, The stability of an elastic rotor in journal bearings with
flexible, damped supports. Trans. ASME, J. Annl. Mech. Ser. A, (1965)
911-920.

[2] 1. Kerr, The Onset and cessation of half-speed whirl in air-lubricated
self-pressurized journal bearings. NEL Report No. 273, Glasgow, 1966.

[31 Z. Kazimierski and K. Jarzecki, Stability threshold of flexibly
supported hybrid gas journal bearings. Trans. ASME, J. Lubr, Technol.,
Ser. F, 101 (1979) 451-457.

{4] H. Massh, The stability of self-acting gas journal bearing with
noncircular members and additional elements of flexibility, Trans.
ASME, J. Lubr. Technol., Ser. F, (1969) 113-119.

[5) K. Czolczyiiski, Stability of Rexibly mounted self-acting gas journal
bearings, Nonlinear Science B, Vol. 7, Chaos and Nonlinear
Mechanics, World Scientific, Singapore, 1994, pp. 286-299,

[6] K. Czolczyfiski, Stability of Rexibly monnted, self-acting gas journal
bearings, XVI Symposium Vibrations in Physical Systems, Blazejewko,
Poland, 1994, pp. 89-90 (summary)

{71 K. Czolczyiski, S 5¢ i i budne wirnika
podpartego w tozyskach gazowy ch (Stability and self-excited
vibrations of a rotor supported in gas bearings), Zesz. Nauk. PE,
(1994) 6942-132 (in Polish)

18] K. Czolczyrski and K. Marynowski, Stability of symmetrical rotor

pported in flexibly d, self-acting gas juurnal bearings, Wear,
in press

[9] K. Czolczyﬁslu and K. Marynowski, How to avoid self-excited

it in sy ical rotors supported in gas journal bearings,
Machine Dyn. Problems, in press.

[10] K., Czolczysiski and K. Marynowski, Stability of unsymmetrica rotor
supported in gas journal bearings, Machine Vibration, in press.

[11] K. Czolczyriski, Hopf bifurcation in gas journal bearings, Trans ASME
Appl. Mech. Rev., (1993) 46392-398.

[12} V., Castelli and H.G. Elrod, Solution of the stability problem of 360
degrec self-acting gas-lubricated bearings, Trans. ASME, J. Busic Eng.
Ser. D, 87(2) (1965) 199-212.

[13] L., Brzeski and Z., Kazimierski, High stiffness bearing, ASME, J. Lubr.
Technol., 101 (1979) 520-525.

[14] Z. Kazimierski and J. Trojnarski, Investigaiions of extetnally
pressurised gas bearings with different feeding systems, ASME, J.
Lubr. Technol., 102 (1980) 59-64.

[15] H.G. Elrod and G.A. Glanfield, Computer procedures for the design
of flexibly mounted, extemally pressurised, gas lubricated bearings,
Proc. Gas Bearing Symp., University of Southampton, 1971, Paper 22.

{16} Z. Kaznmlerskl and J. Krysiniski, LoZyskowanie gazowe i napedy
WNT, W , 1981 (in Polish).

[17] K., Czolczyriski, L. Brzaski and Z. Kazimierski, High stiffress gas
journal bearing under the step fosce, Wear, 167 (1993) 49-58.

{18] K. Czofczyriski, Stability of high stiffness gas journal bearing, Wear,
172 (1994) 175-183.

119]) K. Czolczyriski, High stiffness gas journal bearings in grinding
machines, Machine Dyn. Problems, 5 (1993) 65-87.

[20] L. Brzeski and Z. Kazimierski, Infinite stiffness gas bearings for
precision spindles, Precision Eng., 14(2) (1992) 105-109.

[21]1 S.P. Carfagno and J.T. McCabe, Summary of Investigations of
Entrance Effects in Circular Thrust Bearing, Franklin Inst. Lab. for
Res., Phildelphia, PA, Interim Report 1-2049-24.

[22] E. Dudgeon and H.LR.G. Lowe, Nationat Research Council of Canada,
Ottawa, Ont., Report MT-54, 1965.

[23] H. Mori and A. Mori, On the stabilizing methods of externally
pressurized thrust gas bearings, Trans. ASME, J. Lubr. Technol., Ser.
F, (1967) 283-290.

Biographies

Krzysztof Czolczyiiski was born in 1956. He is Senior Lec-
turer in the Division of Dynamics, Technical University of
L6dz, Poland. He received a Master of Science in Applied
Mechanics (1980), Ph.D. (1988) and Doctor of Science
(1994) from the Technical University of £.6dZ. He has fifteen
years of scientific experience in vibration analysis, rotor
dynamics, theory of machines and mechanisms and first of
all in dynamics of gas bearings. He has a number of
publications in the area of roior dynamics and gas bearings.

Tomasz Kapitaniak was born in 1959. He is the Chief of
Division of Dynamics, Technical University of £.6dZ, Poland.
He received a Master of Science in Mechanical Engineering
(1982), PhD (1985) and Doctor of Science (1988) from the
Technical University of £.6dZ. He is Professor since 1991.
He has fourteen years oi scientific experience in vibration
analysis, chaos and automatic control. He has many
publications in th- area of chaotic motion of mechanical
systems.

Krzysztof Marynowski was born in 1950. He is Senior Lec-
turer in Division of Dynamics, Technical University of L.6dZ,
Poland. He received a Master of Science in Applied Mechan-
ics (1975) and Ph.D. (1983), from the Technical University
of L.6dZ. He has twenty years of scientific experience in vibra-
tion analysis, rotor dynamics and automatic control. He has
several publications in the area of rotor dynamics.



