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Abstract 

When during the operation of rotors supported in gas bearings their rotational velocity reaches a sufficiently high value, the loss of steady-state 
stability occurs. This instability is caused by the loss of damping properties of the gas film, which leads to self-excited vibrations. These 
vibrations are the basic obstacle to a widespread application of gas bearings. 

The phenomenon of self-excited vibrations can be avoided by introducing an elastic supporting structure between the bearing bushes and 
the casing, characterised by properly selected stiffness and damping coefficients. In practice such a straetore can have the form of an externally 
pressurised gas ring. 

In this paper we demonstrate, on the basis of selected examples, which ranges of the values of stiffness and damping coefficients of the gas 
ring make it possible to retain steady-state stability at practically any rotational velocity of the rotor. We also show a design of the ring 
structure, especially of its feeding system, which ensures the required values of stiffness and damping coefficients ( with regard to the stability ). 
Our investigations have been carried out by means of a numerical simulation method with the use of a mathematical model of the gas bearing, 
verified already many times. 
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1. Introduction 

Gas bearings in comparison with oil beatings and rolling 
bearings exhibit numerous indisputable advantages: they 
operate without noise, they have a low moment of friction, 
they do not generate heat and are not subjected to wear. These 
advantages of gas bearings are due to the fact that the surfaces 
of the journal and bush are separated by a gas (mainly air) 
layer characterised by a very low (when compared with oil) 
viscosity. Gas bearings retain their advantages at high rota- 
tional velocities which exceed significantly the maximum 
rotational velocities admissible for oil beatings and rolling 
beatings. 

The main disadvantage of gas bearings, which prevents 
their widespread applications, are the self-excited vibrations 
occurring when a sufficiently high rotational velocity is 
achieved, 

The phenomenon of self-excited vibrations is manifested 
by the fact that at a certain boundary value of the rotational 
veIGeity, the steady-state stability is lost and the bearing jour- 
hal begins to move along the trajectory whose radius increases 
until the journal reaches its stable boundary cycle. At the 
same time the frequency of the self-excited vibrations isequal 
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to the half of the angular velocity--the so-called "half- 
whirl". When the boundary rotational velocity is exceeded 
even by a few per cent, the radius of the boundary cycle is 
bigger than the radial clearance of the bearing, and thus the 
phenomenon of self-excited vibrations leads fast to the jour- 
nal-bush contact and, as a result, to the destruction of the 
bearing. 

As early as in 1965 the investigations (numerical simula- 
tions) carried out by Lund showed that the boundary rota- 
tional velocity of the rotor can be increased by an introduction 
of a system of linear springs and viscous dampers between 
the bushes of the gas bearings and the casing [ 11. This phe- 
nomenon was also confirmed during later laboratory experi- 
ments conducted by Kerr [2] and Kazimierski and Jarzocki 
[ 3 ]. Those researchers used rubber rings between the bearing 
bushes and the casing. Kerr's as well as Marsh's [4] labo- 
ratory experiments also showed that the use of rubber rings 
reduced the width of the region of self-excited vibrations and 
that there was a (theoretical) possibility of the rotor operation 
over the unstable region. 

Czotezyfiski's numerical experiments [5-7] have shown 
that an introduction of the isotropie system of linear springs 
and viscous dampers between the bearing bushes and the 
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casing brings about only a slight increase in the boundary 
rotational velocity (the success of the above-mentioned 
researchers should be evaluatoA as moderate), but it leads to 
a limitation of the range of rotational velocities at which self- 
excited vibrations occur. The main effect of his works was 
that he demonstrated that a proper selection of the values of 
stiffness and damping coefficients of the elastic bush support 
leads to a vanishing of the unstable regions, that is, to an 
elimination of the phenomenon of self-excited vibrations. 
Further investigations carried out by Czolczytiski and Mar- 
ynowski have provided data on the ranges of stiffness and 
damping coefficients, which make it possible to avoid the loss 
of the steady-state stability of symmetrical rotors supported 
in self-acting beatings [ 8 ] and in externally pressurised bear- 
ings [9], as well as of non-symmetrical rotors [ 10]. During 
these investigations an original method for a determination 
of the values of stiffness and damping coefficients of gas 
bearings was used [7,1 ! ]. This method can also be used for 
exlernally pressurised bearings (as opposed to the small per- 
turbation method which can be used only for self-acting bear- 
ings [ 12]). 

The present paper presents a practical solution of an elastic 
bush support of gas bearings, whose stiffness and damping 
coefficients fall within the required ranges (in the light of the 
results included in Refs. [8-10] ). 

What is proposed here is an external gas ring smTounding 
the bearing bush. This ring must be of course externally 
pressurised because the bearing bushes do not rotate ard thus, 
a dynamic load carrying wedge does not occur here. 

During our numerical simulations we tested several gas 
rings which differed in terms of the boundary conditions 
imposed on the gas film and in terms of the feeding system 
structure. 

2. Rotors supported in gas bear ings--our  object of 
interest 

mass m* = 228.0 kg (m = 0.42) 
moment of inertia B* = 68.7 kg m e (B = 42) 
distance between the bearings 2/* = 1.9 m (2l = 34.6) 

The parameters of  the bushes (joined by a common base): 
mass m~ =65.0 kg (rap 0.12) 
moment of inertia B~ = 58.8 kg m 2 (Bp = 36) 
distance between the springs and dampers 2lg=21c=21 

The parameters of the bearings: 
length L=0.11 m 
radius R t = 0.055 m 
radial clearance cl = 30X 10 -6 m 
gas viscos;ty p. = 18.2 × 10 -6 kg m -  I s -  t (air) 
We are investigating self-acting and externally pressurised 

bearings. The feeding system of the externally pressurised 
bearings consists of 16 feedholes, located in two rows in 1 / 
4 and 3/4 of the length of the bearing. The radius of the 
feedhole is ro t=0 .15Xl0  -3 m, and the supply pressure 
p~' =0.7 X 106 Pa (dimensionless supply pressure po=p~/ 
p~=7).  

The parameters of the bearings create the basis for the 
computations of dimensionless parameters of  the rotor and 
the bush (quoted above in brackets), according to the for- 
mulac included in the Appendix. These parameters are also 
the basis for a determination of the relation between the 
dimensional and dimensionless values of stiffness anddamp 
ing coefficients and of the force. 

The bearings are loaded by the rotor weight 2F~ = 2200 N, 
which means that the dimensionless loading force acting on 
the journal of each bearing is equal to Fz = 3.5. The external 
pressurized bearings transfer this force at the relative eccen- 
tricity e--0.35. (The exact value of • depends of course on 
the value of the rotational velocity.) The linearised equations 
of the rotor and bush motion (which are easy to be derived) 
are mentioned in Refs. [7-9]. In these equations, dynamical 
properties of the gas film are represented by four stiffness and 
four damping coefficients. 

A possibility of eliminating self-excited vibrations is 
shown here on the example of the rigid, symmetrical rotor 
supported in two gas bearings with flexibly mounted bushes 
(Fig. 1 ). 

The rotor parameters are as follows: 

I I 

2F, 

, //// ,/ ,/P/,////~/////// ,~/,~ 
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I ~. .L ~. .i 
Fig. I. Symmetrical rotor suppoR~l in two flexibly mounted gas beatings. 

3. The ranges of stiffness and damping ~ e n t s  of  
the elastic support  which allow to avoid self-exalted 
vibrations 

Fig. 2 shows the stability maps of the considered systems 
with externally pressurised bearings for two selected values 
of the stiffness coefficient oftbe elastic support Kp and various 
values of the damping coefficient Cp (on the horizontal axis). 
On the vertical axis, the values oftbe dimensionless rotational 
velocity A of the rotor are represented. 

When Kp = 22 ( thin lines), there are three regions in which 
self-excited vibrations occur. For Cp < I.i or Cp > 2.5 (on the 
left-hand side of the point A22 or on the right-hand side of the 
point B22), at a sufficiently high rotational velocity A, 01o 
loss of the stability of conical modes of vibrations occurs 
(thin dotted lines). Irrespective of this, a continuous region 
of self-excited vibrations of cylindrical modes of  vibrations 
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Fig. 2. Stability thresholds of the rotor suported in externally pressurized 
beanngs; m=O.42, B=42. mp=O.12, Bp= 36.po = 7. F,= 3.5. 

(thin solid lines) existing for all the values of Cp can be 
observed. Though all these unstable regtons are limited, an 
attempt to exceed them may result in the destruction of the 
bearing. 

The situation changes with the stiffness coefficient of the 
bush support Kp= 14 (thick lines). The unstable regions of 
the conical modes are decreased (A22-->AI4 and B22~BI4, 
thick dotted lines), and, which is most important, the contin- 
uous unstable region of cylindrical modes is divided into two 
subregions--self-excited vibrations with the cylindrical 
modes may occur only for Cp<0.85 or Cp>5 (on the left- 
hand side of the point C~4 or on the right-hand side of the 
point Dr4, thick solid lines). It means that for Kp = 14 and 
0.85 < Cp < 2.9, between the points Cj+ and BI4 there is not 
any unstable region and the self-excited vibrations do not 
occur, irrespective of the value of the rotational velocity A. 

Fig. 3 exhibits the boundaries of unstable regions for cylin- 
drical and conical modes of vibrations as the functions of the 
parameters Cp and Kp of the elastic bush support. The bound- 
aries that can be seen in ]Fig. 2 are marked here. The region 
in which both cylindrical and conical modes of vibrations 

K, 
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Fig. 3. Stability map and always stable loop. 
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c, 
Fig. 4. Stability map and always stable Ioop--sclf-acti,~g bearings. 

remain stable irrespective of the value of  the rotational veloc- 
ity is hatched. This region has been called an "always stable" 
loop. 

In Fig. 4 the analogous boundaries of unstable regions and 
an "always stable" loop for a rotor supported in self-acting 
bearings m~ shown. More detailed data about an influence of 
different parameters of the system (Fz, m, mp, B, Bp, Po) on 
the size of "always stable" loops can be found in Refs. [8-  
]Ol. 

4. Mathematical model of the air ring 

The basis of the mathematical model of the gas ring is the 
Reynolds equation describing a pressure distribution in the 
gas film [ 13,14], 

,9 3<9P a se3P ~ . 

dd* +~(Pn,) = ~  (l) 

In the model of the air ring, the gas film is divided into 
axial and circumferential directions. For each grid point i, j, 
the Reynolds equation may be written after a few transfor- 
mations in the following form of finite differences: 

_ ~  a_~Q.÷~p ~ + ~ A p  n,,j+,-H,,~_, +An,,j 
Po A ¢ - - * °  A¢ - ' ~ o  2AO Po 

_ 3/./~lo(Hi/i+ i - H i q - O ( Q q + l  - Q q - O  
4A0 2 

-t- - 3 ~ 1 0  ( Hl  i + i , / -  HI i -  1/) (QI  + i i - Q i -  I/) 
4A ~2 

_H~oQiI+i-2Q~+Qij-I  tJ3 Q i+v-2Qi l+Qi - l j  
,x~ -~1o  A~2 

= 2Ff2Hli~Vk'R's'Ird (2) 
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Ng. 5. Air ring with cl~nher feeding system: I, ¢i~l~:~; 2, c~iug; 3, 
movable bush; 4. journal; 5. gas film of the bearing; 6. gas film of the air 
ring. 

with 

FK2 2 ~ K  ,.+ l, 12~'P0~212r02/~ ~"00 

The right-hand side of Eq. (2) differs from zero only for 
the mass source points (feedholes) i~,j~. To solve numeri- 
cally this equation, the alternating direction implicit scheme 
(ADI) given in detail in Refs. [ 15,16] was adopted. 

The way of modelling the gas flow through the chamber 
feeding system described below was based on the model of 
the so-called high stiffness bearing [ 17-20] and it is its sim- 
plified version. 

A gas ring with a chamber feeding system is shown in 
Fig. 5. The gas of pressure p* flows through the orifices with 
the cross-section area Ad = ~r~ to the chambers of the volume 
V, and then through the feedholes of the radius ro2 to the gap 
between the casing and the beating bush. 

To describe the mass flow through the chamber feeding 
system, it is necessary to formulate: 
1. A simplified relation between the mass flow through a 

feedho!e of the radius to2, and the gas film pressure dis- 
tribution surrounding the feedhole. 

2. A relation between a mass flow and a pressure drop for 
the feedhole of the cross-section Ak = 2~rro2h2. 

3. A relation between a mass flow and a pressure drop for 
the orifice of the cross-section A d = ' f f~ .  

4. Equations of continuity using relations specified above 
(points 1-3). 

For Point 1, near a source point (iz, j~) the Reynolds equa- 
tion may be reduced to a Laplace equation 

020.. 0 2 0 .  
~ 'w+ ~ ~---~z~=n (4) 

002 abe 2 

with unknown Q~o~=P~i~ [ 13,21,22]. The solution of this 
equation in the finite difference approximation can be written 
in the form: 

- //k T/'d Q~a~Q..~ + _'~FK~ (5) 

with 

AO A~ 
_ (Qi~-ti~+Qi,+,/~)-~+(Q,..i~-,+O,d~+,)-~'~ 

Q,.j~: (6) 
~ A ~ + A ~  

c2 Pa pac2 

A~ x2~o . AO. {R2a~ 

(7) 

Assuming, thatpe is the pressure in the source point and using 
the identity 

1 / - \ z  Pc Pc ~,~ 'el  . -2 
We=p-;=p-~ ~p--3 = UTdWe) (8) 

Eq. (5) can be written as 

- UkCrd 
(%¢rcWo) 2 = Q + . . . .~FI{  I (9) 

u 2  

For Point 2, the real mass flow through the feedhole can 
be written as 

r~k = vk~k ( 1 O) 

with the critical mass flow 

2~/~---~o( K - ( l - - f l ( ' ( - I ) / * )  ~ I/'¢ (11) mk=Akpt 1) 

The coefficient Ok = Uk(Wt, /3) can be estimated in simpli- 
fication by means of the Bendenmann ellipse [ 21 ]: 

( ¢rt-[3)2+ u~= l (12) 
(1 _ p ) z  

The parameter zq is a theoretical variable which is related 
to the effective pressure we by means of the formula 

( l -  ~rc) = K ( l - w , )  (13) 

The coefficient K =  K(~,lz,cz,hz,po, g~k,~'d) is determined 
experimentally in Ref. [ 15] as 

K = 0.16 + 0.0002Re for Re < 2000 
K=O.685+O.155y-O.19y 2 for 2000 < Re <4000, 

(y -- (Re - 3000) 12000) 
K=0.715 for Re>4000 

where the Reynolds number is given by 

Re = ~ ( " + l ) / 2 ~ p . ~ T  . (14) 

Estimating wt from Eq. (12) and we from Eq. (13), the 
equation 

[ 1 - K ( 1  - -B)( !  --l~"~--U2k)]2":'r,~'rto=Q+~FKt (15) 

c,,a be ~btained from Eq. (9), with the unknown Vk. 
For Point 3, the mass flow rate through the orifice can be 

calculated by means of the experimental formula [21 ]: 
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Vd =-:--= Cdv(%) (16) 
md 

where 

. f 2K 
m d = A a P o V ' ( K _ - ~ T o  (1 _ flt,~-i)/,~)/31/,~ (17) 

~'~/1- ~ - '  ''~ 
z,(%) (lg) 

for f l<  ~rd_< 1 and 

r(lrd) = 1 (19) 

for 7rd</3. 
The experimentally determined discharge coefficient 

Cd=Ca(Crd) is given in Ref. [16] as Cd=0.85 - 
o.15wj-o.1~. 

For Point 4, as a consequence of the bush motion, the mass 
flows r~k, n~d change with time and cause increases of the 
pressures p, in chambers: 

Pl--Plo V 
At ~To md--nik (20) 

The subscript 0 denotes initial values of the pressure. 
Substituting 

~'  '~/") ¢rd I/'~ (21) 
2K 

d ' I d = C o A d P o  ( x _  l)~To (1 - w(~"- 

" a / 2x ( 1 _  ~,~_~)/~) ~/K 
mk= t p ~ v ' ( ~ _ ' ~ R T  ° (22) 

Eq. (20) may be obtained in the form 

- -  _P,  -Pu__.__.2., ~ - -  (23) VdAdPo--VkIIkPI-- At  vrt~3 

with 

1 
FK 3 ( 24 ) 

~ / 2K  ~ ' 1  o ( ~¢-- 1 )1/¢'~ ¢2, I h¢ 
~oV ( x _  1)giTo t ~ - P  ~P 

Dividing Eq. (23) bypo gives finally the equation: 

/~d.qd-- VkAk'/r d = ("R" d -  "/rdO ) ~ f f F g  3 ( 2 5 )  

with unknown "/T d (note, that vd is a function of ¢rd). The 
subscript 0 denotes the initial value of the pressure ratio. 

Eq. (25) produces, together with Eq. (15), a system of 
two non-linear equations with unknowns % and Uk. The 
solution of this system is not an easy task. It is done by the 
method of successive approximations. 

In our investigations we also used gas rings with a direct 
feeding system, as those shown in Fig. 6. The mathematical 
model of such a ring is of course based on the Reynolds Eq. 
(2) and on the equations describing the relation between the 
mass flow through a feedhole of the radius ro2, the gas film 

AI 

~'///////////////////~ @ 
::1 :: 

-~'-r ....... a .......... -~ . . . . .  

A I , 
Fig. 6. Air ring with direct feeding system. 

pressure distribution surrounding the feedhole, and the pres- 
sure drop for a feedhole of the cross-section A k = 2./fvo2h 2. 
These equations have been written above as Eqs. (4)-(15) 
with Pl =t7o, i.e. ~'d = 1. 

The mathematical models of both the rings provide data 
on the components of the loading force in the direction of the 
axis x and y: 

L/R22~r 

o 0 

LIR22~r 

F.,,=pJ~ f f PsinOdOd6 (26) 
0 0 

at the gap h2 defined by the equation: 

h 2 = q ( 1 - ~ c o s  ( 0 -  0s) ) (27) 

Models have been used in computing the values of stiffness 
and damping coefficients of gas rings by means of the method 
described in Refs. [7,11 ]. 

In this mathematical model of the system, the rings are 
represented by matrices of these coefficients. The matrices 
multiplied by the bush ve!oc.ity components :,p and );p and the 
bush displacement components Xp and yp from the static equi- 
librium position inform us about the values of dynamic 
responses of the ring: 

c, ql- 1+rK,, ;q21rx1 
8F, yJ LG, c22JLypJ-LK2, K2dLyJ (2s) 

It should be added, however, that during our investigations 
we found that the values of the coupling coefficients Ct2, C2~, 
K12, K21 were negligibly small. 

5, Externally pressurised air ring as the flexible support 
of  the bush 

5.1. Air ring with the direct feeding system 

In our first investigations we made computations of the 
stiffness and damping coefficients of the air rings with the 
simplest, direct feeding system (the same as the feeding sys- 
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6 3 6 Fig. 7. Damping coefficient of air ring withdirect feedingsystem: (a) R2=0.065 m, cz=30X 10- m; (b) ro2=0.15 x 10- m, cz=30X 10- '- (c) R2=0.065 
m, roz=0.15x 10 -3 m. 

tern o f  the  b e a r i n g s ) .  T h e  length  o f  the  r ing  L = 0.11 m w a s  

equal to the length of the beating (Fig. 6). 
Figs. 7 and 8 show the values of the damping coefficient 

C,~ and the stiffness coefficient gaa of the ring (in the plane 
along which the force Fz acts) for different values of the 
radius re2 of the feedholes, the ring radius Re and the clearance 
c2 between the bush and the casing. As one can see, the 
changes of these basic parameters do not exert any significant 
influence on the value of the stiffness coefficient,orespecially 
on that of the damping coefficient. As opposed to the arbi- 
trarily selected constant values of the stiffness and damping 
coefficients Kp and Cp of the springs and dampers which 
support the bush shown in Fig. 1, the stiffness and damping 
coefficients of the gas rings depend on the frequency of vibra- 
tions v of the bush, represented on the horizontal axes in 
Figs. 7 and 8. When the eccemricity ratio between the bush 
and the casing is small (in our examples do not exceed 0.2), 
the coefficients C22 and K22 (in the plane perpendicular to 
the plane along which the force Fz acts) are similar to CH 

and K~. Values of the cross-coupling coefficients Cn, Ka2, 
C2a and K2a are small in comparison with C .  and K . .  More- 
over, the changes of the rotational velocity of the rotor, in the 
considered range of A, cause so small changes of the natural 
frequencies ~,, that the air ring may be considered as the 
(almost) isotropic support, of the bushes, like the springs Kp 
and dampers Cp. 

As one can see, the coefficient CH, which is to play a role 
of the coefficient Cp of the elastic bush support, has the value 
of magnitude of 1 only for low frequencies of vibrations. 
When the frequency of vibrations v increases, this coefficient 
decreases rapidly. For :, ~- 3-4 (self-excited vibrations of the 
investigated syslem have the frequency of this magnitude), 
the value of Can is already smaller than 0.3. Such a damping 
coefficient does not ensure an elimination of self-excited 
vibrations--compare with the drawings of "always stable" 
loops (Figs. 3 and 4). The stiffness coefficient K~a has a value 
in the range 13-15. It could play a role of Kp in the case of 
externally pressurised bearings (Fig. 3), but only if associ- 
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Fig. 8. Stiffness coefficient of air ring with direct feeding system: ta) R~ =0.065 re.c2 ~ 30x 10 -6 m; tb) re==0.15 × 10 -'~ re.c: = 30:< 10-e; (c) R2 = 0.065 
m. ro2=0.15 X 10 -3 m. 
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ated with the damping coefficient Cp( : CI i ) = 2. The values 
of the stiffness and damping coefficients C22 and K22 of the 
air rings (in the plane perpendicular to the plane along which 
the force F: acts) are close to C** and £ ~ ,  and therefore their 
diagrams are not presented here. This remark concerns all the 
results presented below as well. 

Aiming at an increase in the value of the damping coeffi- 
cient of the gas ring, we have modified the boundary condi- 
tions of the gas film by an introduction of rubber seals at both 
the ends of the ring, which is shown in Fig. 9. Fig. 10(a) 
presents the coefficient CH as a function of the frequency of 
vibrations of the bush for four different values of the angle 
% (compare Fig. 9) which defines the size of the seals. The 
ring parameters are as follows: L=0.11 m, R2=0.065 m, 
ro2 = 0.15 × 10 - 3 m, c2 = 30 × 10 - 6 m. The representation of 
Cn and K:: corresponding to 3,,=0 (without seals) has been 
transposed from Figs. 7 and 8. As can be seen, the seals whose 
task was to hinder the air flow along the ring axis have indeed 
caused an increase in the values of the coefficient C . .  For 
instance, for v = 4 from Cn : O.29 for Sr = O to C H = O.67 for 
% = 2/3 × 2~r. This last result would fall inside the "always 
stable" loop (compare Fig. 3 and Fig. 4), if not for the fact 
that an increase in the damping coefficient is accompanied 
by an increase in the stiffness coefficient K , .  As can be seen 
in Fig. 10(b), this coefficient assumes the values in the range 
20-30 for 7 r :  2 /3  × 2~r, and hence above the "always sta- 
ble" loop. 

As a further attempt we tried to support the boating bush 
in gas rings with longitudinal rubber baffles which reduce a 
circumferential air flow (Fig. 11). The gas film of the ring 
with the parameters: L=0.11 m, R2=0.065, ro2:0.15 
× 10- 3 m was divided by us by means of these elastic baffles 
into nk = 4, 6 and 8 sectors. In each sector there was 1 feedhole 
located half way down the length of the ring. Fig. 12 presents 
the values of the coefficients Cn and K ,  for n k = 8  and for 
three different values of the radial clearance c2. As can be 
easily seen, the values of  the coefficient C:s again lie below 
the required region Cs ~ > 0.5, and the stiffness coefficients-- 
over the required KH < 10-15. 

Fig. 13 shows how the values of the stiffness and damping 
coefficients are affected by the change in the number of the 
sectors n~. Our further defeat can be seen in the fact that when 

A !r- A-A 
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Fig. 9. Air ring with rubber seals ( I ). 
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Fig. I 1. Air ring with longitudinal robber baffles (1). 

for nk = 4 the coefficient CII = 0.5 ( v -  4), then the coeffi- 
cient K .  exceeds 20--we are again outside the "always 
stable" loop. 

5.2. Air  ring with the chamber feeding system 

Since it has been found that the air rings with the dim:eft 
feeding system do not have such stiffness and damping coef- 
ficients which ensure an elimination of self-excited vibra- 
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Fig. 12. (a) Damping and (b) stiffness coefficient of air ring with longitu- 
dinal rubber baffles; nk = 8. 

tions, we have undertaken investigations of the ring with the 
chamber feeding system, which is shown in Fig. 5. We have 
assumed that for this ring L=0.11m, R2-0.065m, 
p~' = 0.7 x 106 Pa and that the feeding system consists of two 
rows of feedholes, eight feedholes in each row. 

In the first experiment we investigated the influence of the 
volume V of the air chambers on the values of stiffness and 
damping coefficients. We have assumed that the radius of the 
feedholes ro2=l .0Xl0  -3 m and the orifice radius 
r e = 0.15 X 10- 3 m. The volume of the chamber is expressed 
by the formula: 

V = 'ffr~khk ( 29 ) 

and as the constant value rk=5.0X l0 -3 m)radius of the 
chamber) is assumed, it is proportional to the chamber height 
hk. Fig. 14 shows the values of C .  and K .  as a function of 
the frequency of vibrations z, for four different values of  the 
chamber height hk ffi 3, 6, 9 and 3 6×  10 -3 m. 

While in the rings with the direct feeding system, the lower 
the frequency of vibration o, the greater the values of the 
coefficient C~ were, then with the chamber feeding system 
there is an extremum of the function C .  (v) .  For low values 
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Fig. 13. (a) Damping and (b) stiffness coefficient of  air ring with longitu- 
dinal rubber baffles; ez = 30 x I 0 - 6 m. 

of v (below the extremum of Ctl ), the value of Ctt decreases 
rapidly, even below zero. 

It is easy to find the cause of this so far unobserved phe- 
nomenon. At sufficiently small values of the frequency o and 
sufficiently small volumes o of the chambers, significant 
changes of the pressure in the chambers occur during the 
motion of the bush. In the critical case it leads to the phenom- 
enon of the pressure resonance described in the literature as 
the "pneumatic hammer" [23] and as a result to the loss of 
stability. For hk < 3 X 10 - 3 m, this phenomenon could occur 
at the frequencies of free vibrations of the rotor under inves- 
tigation. For sufficiently high values of u and hk, the motion 
of the bush is so fast that during one period no significant 
changes in the pressure pt in the chambers occur---the air 
will not"manage" to flow into or out of the chamber in such 
a quantity which would cause any significant change of the 
pressure. The value of the coefficient C, ~ for v = 4-5 lies over 
the boundary of the "'always stable" loop which is approx. 
Cp=0.5. The fact that these values of the damping coeffi- 
cients are accompanied by the values of the stiffness coeffi- 
cient KH =6-8 (for v = 4 - 5 )  is very important as it means 
that we aref inal ly  inside the "always stable" loop.* 
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Fig. t4. (a) Damping and (b) stiffness coefficient of air ring with chamber 
feeding system; fez= I.Ox 10 -3 m, rd=0.15 X 10 -3 m. 

Our passion o f  researchers has made us investigate the 
possibilities of influencing the va'iues of K .  and C .  by 
changing other parameters of  the ring, especially those of the 
feeding system. Fig. 15 shows how the values of  these coef- 
ficients are affected by the change in the radius of the feedhole 
re2 (rd=0.15 X 10 -3 ra, C2=30X 10 -6 m, hk=6.0X 10 -3 
m).  In this figure we also present the values of  C .  and K H 
of the ring with the direct feeding system transposed from 
Figs. 7 and g (R2=0.065m, c 2 = 3 0 X 1 0  -6, ro2=0.15 
× 10 -3 m) marked as the thin dotted line. As can be seen, 
starting from ro2=rd=0.15X Y,0 -3 m the damping coeffi- 
cient increases as the radius oftbe feedhole increases (except 
for the "'pneumatic hammer" region). We think that the 
reason for this phenomenon is the fact that while for the ring 
with the direct feeding system the air of the same pressure 
/7o = 7 left each feedhole, then in the case of the ring with the 
chamber feed!ng system, pressure in each chamber on the 
circumference is different. Fig. 16 presents distributions of 
the pressure p~ in the air chambers of the ring under investi- 
gation, for different values of/'o2 in the static equilibrium 
position. The force F~ loading the ring causes a displacement 
of the bush in the direction of chamber 1. When the feedhole 
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Fig. 15. (a) Damping and (b) stiffness coefficient of air ring with chamber 
feeding system; hk=6.0X l0 -3 m, rd=0.15 X 10 -3 m. 

NO. I is covered by the bush, then the air stream n~ k coming 
from this chamber is the least. Hence, the pressure p, in this 
chamber is the highest. The opposite situation takes place in 
"die C~LSe of chamber 5: the bush is at a maximum distance 
from it, which causes the value of the air stream coming from 
this chamber to be the highest, and consequently the pressure 
p~ is the lowest. For ro2=0. |5 X 10 -3 m the values of the 
pressure in the chambers are closest to the value of the supply 
pressure po=7.  As the re2 increases, the pressures in the 
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Fig. 16. Static distribution of pressure p~ in chambers; rd = 10- 3 m. 
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Fig. 18. (a) Damping and (b) stiffness coefficiem of air ring with chamber 
feeding system; hj,=6.0X 10 -3 m. roe = 1.0X 10 -3 m. 

chamber decrease, and the differences between them become 
greater and greater. This phenomenon is followed, as we have 
already mentioned, by an advantageous increase in the value 
of the damping coefficient Ct i and an advantageous decrease 
in the stiffness coefficient KH. For ro2=2.0× ]0 -3 m and 
v =4-5,  we observe (Fig. 15) C ,  =0.9 and Ki; = 4 - - s u c h  
values of CH and K .  ensure a static operation of the rotor 
supported in both the externally pressurised bearings as well 
as in self-acting bearings. 

Another parameter of the feeding system that affects the 
coefficients Ct t and Kll is the radius ra of the orifice through 
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Fig. 19. (a) Damping and (b) stiffness coefficient of air ring with chamber 
feeding system; h~=9.0x 10 -3 m, r~= l.Ox 10 -3 nh rd= 0.15 X 10 -3 m. 

which the air enters the chamber. Fig. 17 shows the distri- 
bution of the pressurept in the chambers (as in Fig. 16) for 
the ring with ro2=1.0×10-3 m, hk=6.0Xl0 -3 m and 
c2 = 30.0x 10 -6 m and with the orifice radii r,t= 0.15, 0.30, 
0.60 and 1.0 x 10 - 3 m. As can be seen, when the oririce radius 
rd increases, aiming for the value roz, the pressures in the 
chambers aim for the value of the supply pressure/70=7, 
which is obvious. The effect of this phenomenon can be seen 
in Fig. 18, where the coefficients Cll and Kll are shown. For 
rd = ro2 = 1.0 × 10 -3 m, the ring has the same damping and 
stiffness coefficients as the ring with the direct feeding system 
and to2 = 1.0× 10 -3 m. A decrease in the value ofrd causes 
a decrease in the value of the damping coefficient, especially 
in the region of the "pneumatic hammer" and near it, but 
these changes are small. What matters is that the decrease in 
the radius r d brings about a significant (advantageous!) 
decrease of the damping coefficient KIt and "introduces' ' us 
inside the, "always stable" loop. 

The last parameter whose influence on stiffness and damp- 
ing coefficients we investigated was the ~dial clearance c2. 
The results of the investigations carried out for the ring of 
rd----0.15X 10 -3 m, roz= 1.0X 10 -3 m, hk----9.0X 10 -3 m 
and c2= 30, 40 and 50X 10 -6 m are to be found in Fig. 19. 
The analysis oftbe results is very simple: the increase in the 
radial clearance brings about the decrease in both the damping 
coefficient ( which is disadvantageous ) and the stiffness coef- 
ficient (which, in turn, we consider advantageous). For the 
system: rotor-bearings--air rings investigated by us, we con- 
sider the ring with the least value of the radial clearance 
c2 = 30 × l0 -6 m to be the optimum one. 
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6. Stabi l i ty  o f  the ro to r  supported in  external ly 
pressurised gas bearings with bushes mounted in air 
rings 

Finally, we present the results of the investigations of the 
steady-state stability of the rotor whose parameters are given 
in Section 2 and which is supported in externally pressurised 
bearings. 

When the bearing bushes are mounted flexibly, the system 
under consideration has eight degrees of freedom, hence its 
mathematical model (a set of differential equations of 
motion) has eight eigenvalues: 

Ai=711"bjlPl i=1  ..... 4 (30) 

The free vibrations oftbe system occur with the frequencies 
equal to the imaginary parts v i of the eigenvalues. As the 
system is symmetrical, the main modes of vibrations are 
cylindrical ones (the displacements of both the bearing jour- 
nals are equal and are in the phase) or conical ones (the 
displacements of the bearing journals have the same values, 
but they are in the counterphase). 

The signs of the real parts of the eigenvalues inform us 
about the stability of the static equilibrium position of the 
system--when the sign of the real part is positive, it means 
that the free vibrations of the frequency equal to the imaginary 
part of this eigenvalue have been self-excited. 

When the rotational velocity A of the rotor is small enough, 
then the real parts of all eigenvalues are negative. If a certain 
value of the Acgt is exceeded!, the sign of one of the real parts 
of eigenvalues to which (in our rotor) the vibrations with 
cylindrical modes correspond changes into a positive one--  
a loss of the static equilibrium position and self-excited vibra- 
tions occur. If these vibrations do not destroy the beatings 
soon, once a further critical value Acn 2 is achieved, and the 
self-excited vibrations vanish. The real and imaginary parts 
of the four basic (lowest) eigenvalues, to which the vibra- 
tions of cylindrical and conical modes correspond are shown 
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Fig. 21. Eigenvaiucs of the rotor with bushes suppolted in air ring with 
chamber feeding sys~m. 

in Fig. 20 for the case when a system of linear springs with 
Kp=22 and dampers with ¢p=2  is introduced between the 
bearing bushes and the casing. The values of Kp and Cp have 
been chosen purposely beyond the "always stable" loop 
from Fig. 3. The boundaries Acal and Acaz are marked in 
Fig. 2. 

When the system of springs and dampers with such unfor- 
tunately selected parameters is replaced by air rings with a 
chamber feeding system, the vibrations are not self-excited. 
Fig. 21 shows the representations of real and imaginary parts 
of the basic four eigenvalues of the system, in which the 
bearing bushes are mounted in the rings with L=0.11 m, 
Rz=0.065m, ra=0.15X10 -3 m, ro2=l.0×10 -a m, 
rk=5.0X 10 -a m, hk=36.0X 10 -a m and ¢2=30.0X 10 -6 
m. As can be seen, in the whole investigated range of the 
rotational velocity A, the values of the real parts of all the 
¢igenvalues are negative, which means that the static equilib- 
rium position of the system is stable. 

According to our expectations, the values of stiffness and 
damping coefficients C11, C22,/Cl1 and K22 of the ring are 
inside the"always stable" loop. The change in the frequency 
of vibration O ( 1.6 _< v < 3.15 ) cause the changes in the stiff- 
ness and damping coefficients in the range from 0.9 to 1.05 
for C . ,  C22, and in the range from 3.5 to 5.9 for K,i, K22. 
These ranges of the coefficients are marked in Fig. 3 as the 
black rectangle. 

7. Conclusions 

There is a possibility of eliminating self-excited vibrations 
of the rotor supported in gas bearings. It can be achieved by 
mounting the bearing bushes in air rings which perform a 
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role of an elastic support for these bushes. Air rings with a 
direct feeding system (the easiest one to obtain) have too 
high stiffness coefficients and too low damping coefficients 
to play a role of eliminators of self-excited vibrations. Suit- 
able values of the stiffness and damping coefficients can be 
achieved with rings with a chamber feeding system. In spite 
of the positive result of our investigations, the fact is that v:z 
have not yet managed to design a ring with a damping coef- 
ficient higher than 1, retaining the stiffness coefficient lower 
than I0, which would be an ideal solution. We are sum, 
however, that it is possible. The construction of such a ring 
will be shown in our future works. 

Appendix A. Nomenclature 

Ad, Ak 

B 

C 
Cd 

C,j 
Cp 

C 

FKI, FK2, FK3 
F,. 
]21, h2 

H l ( = h J c , )  

I"12( = h2/ c2) 

r,j 

l 

lc 

L 
m 
mp 

mr 
?fld, ?~k 

~d, ~k 

nk 
P(=p/p~) 

areas of cross-sections of orifice 
(d), feedhole (k) (m2) 
inertial moment of rotor 
inertial moment of joint bushes 
dimensionless constant 
dimensionless discharge 
coefficients in orifice (d) 
damping coefficients of gas film 
damping coefficient of elastic 
support 
radial clearance of bearing (m) 
dimensionless constants 
static loading of bearing 
local film thickness, shaft bush, and 
bash easing, mh k, height of 
chamber (m) 
dimensionless film thickness shaft 
bush 
dimensionless film thickness bush 
casing 
stiffness coefficients of bearing 
stiffness coefficient of elastic 
support 
a half of the distance between 
bearings 
a half of the distance between 
dampers 
a half of the distance between 
springs 
length of bearing 
mass of rotor 
mass of joint bushes 
reduced mass of the rotor 
mass flows through orifice (a), 
feedhole (k) (kg s -  i) 
critical mass flows through orifice 
(d), feedhole (k) (kg s - l )  
number of gas film sectors 
dimensionless pressure in the gap 
shaft bush 

P.  
/7o 
Pc 

P, 
@_~ =Pb 
Q 
Rt 
R2 

Re 
to, 

to2 

rd 
rk 
Zo 
t 

V 
2 ~ / (~- I )  

K 
% 
At 
O" 

6 

A 
A, 
V 

Pd~ Vk 

~(=p,/po), 
7to(~pc/p2), 
~ , ( = p , @ 2 )  
~( = ~I2M) 
n 

¢0 

atmospheric pressure (N m-2) 
supply pressure 
effective pressure in annular orifice 
(Pa) 
auxiliary theoretical pressure (Pa) 
dimensionless variable 
mean value of Q 
radius of bearing (m) 
radius offing (m) 
universal gas constant (J kg-  t 
K-t) 
Reynolds number 
radius of plain feedhole of bearing 
(m) 
radius of plain fcedhole of air ring 
(m) 
radius of orifice (m) 
radius of chamber (m) 
constant gas temperature (K) 
time (s) 
volume of chamber ( m 3) 

critical pressure ratio 

isentropic expansion index 
angle of seal (tad) 
increment in time (s) 
gas viscosity (N s m-  t) 
relative eccentricity ratio shaft bush 
dimensionless coordinates of gas 
film, related to Rt 
viscosity (N s m -2) 
dimensionless bearing number 
complex eigenvalues 
dimensionless mass flow rates 
dimensionless mass flow through 
orifice (d), feedhole (k) 
pressure ratios 

dimensionless time 
angular frequency of vibmt!on (tad 
S - I )  

angular velocity of shaft (tad s -  ' ) 

Appendi:, B 

All the dimensionless parameters which are used in the paper 
are related to the bearing parameters: 

¢~ [Nsm-'] ffi 2ApeC2C'iog ~ [N m-t] =P--c~--Kii 
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m* [kg]-4A2p~R2 B *  [ k g m  :~] 4AZPal~" 
- ¢o2--------~m = ca2c~a 

ca [rad s - I  ] -- 6~R2AP'C2 v *  [rad s - i ]  =~.~,°J t [s] =2A.ca 

l* [ m ] = R l  ~ *  1 , F  
• p a r  2 
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