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Dynamics of a four-parameter family of two-dimensional piecewise linear endomorphisms which consist of
two linearly coupled one-dimensional maps is considered. We show that under analytically given conditions
chaotic behavior in both maps can be synchronized. Depending on the coupling the parameters chaotic attrac-
tor’s synchronized state is characterized by different types of stability.@S1063-651X~96!11409-4#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Recently it has been shown that two identical chaotic sys-
tems x85 f (x) and y85 f (y) or xn115 f (xn) and
yn115 f (yn) can synchronize, i.e.,ux(t)2y(t)u→0 ast→`
or uxn2ynu→0 asn→` @1–10#. Such synchronization has
potential practical applications in secure communication
@11–13#.

Consider the two-dimensional system

xn115 f l ,p~xn!1d1~yn2xn!,

yn115 f l ,p~yn!1d1~xn2yn! ~1!

consisting of two linearly coupled identical one-dimensional
subsystems governed by

xn115 f l ,p~xn!,

yn115 f l ,p~yn!, ~2!

wherex,yPR, l andp are systems parameters,d1,2 coupling
parameters, l ,p,d1,2PR. Assume that xn115 f (xn) and
yn115 f (yn) have a one-dimensional chaotic attractorA.

In the synchronized regime the dynamics of system~1! is
restricted to one-dimensional invariant subspacexn5yn , so
the problem of synchronization of chaotic systems can be
understood as a problem of stability of one-dimensional cha-
otic attractorA in two-dimensional phase space@15,16#. Let
A be a chaotic attractor. The basin of attractionb(A) is the
set of points whosev-limit set is contained inA. In Milnor’s
definition @14# of an attractor the basin of attraction need not
include the whole neighborhood of the attractor, i.e., we can
say thatA is a Milnor attractor ifb(A) has a positive Le-
besgue measure. For example, a riddled basin@15–18# which
has recently been found in practical physical systems
@19,20#, has a positive Lebesgue measure but does not con-
tain any neighborhood of the attractor. In this case an attrac-
tor A is transversely stable in the invariant subspacexn5yn ,
but its basin of attractionb(A) may be a fat fractal so that
any neighborhood of the attractor intersects the basin with a
positive measure, but may also intersect the basin of another
attractor, with a positive measure. AttractorA is an asymp-

totically stable attractor if it is Lyapunov stable andb(A)
contains the neighborhood ofA.

In this paper we consider the dynamics of a four-
parameter family of two-dimensional piecewise linear endo-
morphism

xn115pxn1
l2p

2 S Uxn1 1

l U2Uxn2 1

l U D1d1~yn2xn!,

yn115pyn1
l2p

2 S Uyn1 1

l U2Uyn2 1

l U D1d2~xn2yn!,

~3!

which consists of two linearly coupled one-dimensional
maps being a generalization of a skew tent map. Chaotic
attractors of a skew tent map have been considered in@21–
24,28#.

Dynamics of two coupled maps have been investigated in
several papers, for example,@25–27#. A system of two
coupled tent maps has been investigated by Pikovsky and
Grassberger@25#. They found that even when a system has a
stable synchronized state, the basin of attraction can be
densely filled with periodic points so the attractor is not as-
ymptotically stable. The dynamics of several endomorphisms
of the plane constructed by coupling of two logistic maps
was considered by Gardiniet al. @26#. They used the concept
of critical curves to determine global bifurcation. Critical
curves were used by Celka@27# to estimate synchronization
regions of two unidirectionally coupled triangular maps.

The outline of this paper is as follows. Section II recalls
some fundamental properties of the one-dimensional map
xn115 f l ,p(xn) considered. In Sec. III we describe general
properties of the two-dimensional map~3!. We give analyti-
cal conditions under which chaotic behavior in both maps
can be synchronized. Some particular examples are discussed
in Sec. IV where we additionally show that, depending on
the coupling parameters, the synchronized state is character-
ized by different types of stability. Finally, we summarize
our results in Sec. V.

II. ONE-DIMENSIONAL MAP

Let f5 f l ,p :R→R be a one-dimensional map of real line
into itself in the form
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f l ,p :x→px1
~ l2p!

2 S Ux1
1

l U2Ux2
1

l U D , ~4!

where parametersl andp are the slopes. A graph off l ,p(x)
is shown in Fig. 1. When

~ l ,p!P( 5H l.1,2
2l

l21
,p<21J

f l ,p maps interval@21,1# into itself. If

~ l ,p!P) 5H l.1,2
2l

l21
,p<2

l

l21 J
the whole interval@21,1# is the chaotic attractor which will
be denoted byG. Otherwise, i.e., when

~ l ,p!P(
0

5( \) ,

f l ,p has two symmetrical chaotic attractorsI ~1! and I ~2! in
the intervals I (1)5[11p( l21)/l ,1] and I (2)5[21,21
2p( l21)/l ]. In this case mapf l ,p can be considered as a
generalization of the skew tent map investigated in@21–
24,28#.

Depending on parametersl andp each of these attractors
is a cycle of 2m chaotic intervalsI (6)5I m

(6), m50,1,2,... .
Later we will omit the symbol6 so that it does not cause
misunderstanding. Formulas for the parameter region
( l ,p)PPm of the existence of attractorsGm can be found in
@21–24#. Merging bifurcationGm11→Gm is caused by the
appearance of a trajectory homoclinic to the point cyclegm
of the period 2m. In Fig. 1 the functionf l ,p is plotted in the
casel52p5A2 when the bifurcationG1→G0 takes place.

For any (l ,p)P( the mapf l ,p has in the interval@21,1# a
‘‘good’’ invariant measure denoted bym5ml ,p which is ab-

solutely continuous with respect to the Lebesgue measure,
with a supportG m

(1)øG m
(2). Let r(x) be a probability density

function, i.e.,

m l ,p~J!5E
J
r~x!dx

for any measurable setJ @21,1#.
At the bifurcation pointsGm11→Gm given by the relation

pdm11l dm1~21!m~p21!50, m50,1,...

wheredm are obtained from the recurrent relation

dm1152dm1 1
2 @11~21!m#, m50,1,...

and d051, probability density function is constant at any
component ofGm11, hence its values are inversely propor-
tional to the length of the component~the measure of each
component ofGm11 is equal to 2(m11)!.

Consider the bifurcationG1→G0 which takes place at
l5p/(12p2). In this case the fixed point has coordinate
x 1
(1)5(p2 l )/ l (p21), and it can easily be shown that

mS F11
p~ l21!

l
,

p21

l ~p21!G D5mS F p2 l

l ~p21!
,1G D5

1

2

and

mS F11
p~ l21!

l
,
1

l G D5
p221

2p2
,

mS F1l ,1G D5
p211

2p2
,

mS F1l ,1G D
mS F11

p~ l21!

l
,
1

l G D
5
p211

p221
.

III. TWO-DIMENSIONAL MAP:
DIFFERENT TYPES OF THE STABILITY
OF SYNCHRONIZED CHAOTIC REGIMES

Let us consider a two-dimensional endomorphism
F5Fl ,p ~continuous noninvertable map! of the plane into
itself, of the form

Fl ,p :S yxD→S f l ,p~x!1d1~x2y!

f l ,p~y!1d2~y2x! D ,
where f l ,p has been defined in Sec. I andd1,2PRl are cou-
pling parameters. Whend1,250 mappings alongx andy axes
are independent. Such a type of an uncoupled map will be
denoted byF l ,p

(0), i.e.,

Fl ,p
~0! :S xyD→S f l ,p~x!

f l ,p~y! D .
Let (l ,p)PS, thenF l ,p

(0) has an invariant squareI3I , where
I5@21,1#. If additionally (l ,p)PP, this whole square is a

FIG. 1. Graph of the functionf l ,p(x); l52p5&.
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chaotic attractor. Let (l ,p)PP0, than F l ,p
(0) has four sym-

metrical chaotic attractorsA( i ), i51,4 insideI3I shown in
Fig. 2.

If ( l ,p)PPm, F l ,p
(0) has 432m symmetric chaotic attrac-

tors being cycles of chaotic squares of the period 2m ~the
so-called period 2m chaotic attractors!.

As the computers experiment presented in Figs. 3~a!–3~d!
shows, such types of attractors are preserved at small cou-
pling ud1,2u!1—Fig. 3~a!, but they disappear when coupling
increases—Figures 3~b!–3~d!. First attractors far from the
main diagonalx5y, i.e., A~2! andA~4! are destroyed—Fig.
3~b!. Next the survived attractorsA~1! and A~3! merge
together—Fig. 3~c!. In Fig. 3~d! we observe thatx5y, i.e.,
chaotic trajectories ofx andy subsystems are synchronized
and two-dimensional attractors ofFl ,p are reduced to the two
symmetrical one-dimensional attractors at the main diagonal
x5y. It should be mentioned that the main diagonalx5y is
invariant with respect toFl ,p for any d1,2, and the mapping
along it coincides withf l ,p . As a resultFl ,p has one eigen-
directionu15~1,1! which is parallel to the main diagonal, its
multiplicator coincides with the multiplicator off l ,p

n15H l , uxu,
1

l
,

p, uxu.
1

l
,

and, therefore, the first Lyapunov exponentl1 is always
positive.
The second eigendirectionu25(d1 ,2d2) ~exists if
ud1u1ud2uÞ0! is also invariant for any point of the main
diagonal. Its multiplicator is also given in an explicit form

n25H l2~d11d2!

p2~d11d2!

uxu,
1

l

uxu.
l

l
.

~5!

The property of parallelness of the second eigendirection for
any point of the main diagonal allows us to obtain the con-
dition for stability of the chaotic attractor at the main diago-
nal, which can be written as

u l2~d11d2!uup2~d11d2!u~m/12m!,1, ~6!

wherem5m l ,p($uxu>1/l %). One can easily check that it is a
condition of negativeness of the second Lyapunov exponent
of the attractor.

l25~12m!lnu l2~d11d2!u1m lnup2~d11d2!u,0,
~7!

which is an overaged Lyapunov exponent of the typical tra-
jectory on the attractor.

FIG. 2. Attractors of the mapF l ,p
(0), (l ,p)PP03P0.

FIG. 3. Attractors of the mapFl ,p ; l51.5, p522.4; ~a!
d15d250.1, ~b! d15d250.25, ~c! d15d250.3, ~d! d15d250.6.
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Let us extract different situations related to the stability or
instability of synchronized chaotic attractors on the main di-
agonal in the transversal direction.

~1! Even if l2,0, there can exist trajectories at the attrac-
tor A, for which the second Lyapunov exponent is positive.
In this case we get the so-called weak stability so as the
attractorA is the attractor in a weak Milnor sense@14#, i.e.,
there exist a nonzero measure set in any neighborhood of the
attractor, points of which are not attracted toA. This set is
typically dense in the neighborhood of the considered attrac-
tor giving rise to the phenomenon of riddled basins.

~2! If the second Lyapunov exponent is negative for any
trajectory at the attractor we get the so-called strong stability.
Chaotic attractorA at the main diagonal is asymptotically
stable, i.e., it attracts all trajectories from some of its neigh-
borhood.

~3! Analogically, if l2.0 there can exist trajectories at the
attractorA for which the averaged second Lyapunov expo-
nent is negative. This case will be referred to as the weak
instability. This phenomenon is also called on-off intermit-
tency @29# or attractor bubbling@15#.

~4! At last, if there are no such trajectories for which the
second Lyapunov exponent is negative we have strong insta-
bility of the attractor on the main diagonal.
In the first two cases the considered attractor at the main
diagonal can be called chaotic node, weakly attracting in
case 1 and strongly attracting in case 2. Analogically, the last
two cases are chaotic saddles, weak in case 3 and strong in
case 4.

First, we introduce the following notation for regions of
different kinds of stability of the attractors at the main diag-
onal. Note that if slopesl andp are fixed, stability depends
only on the sum of coupling parametersd5d11d2 . Let us
denote

D15$dPR: strong stability takes place%,

D25$dPR: weak stability takes place%,

D35$dPR: weak instability takes place%,

D45$dPR: strong instability takes place%.

IV. STABILITY CONDITIONS

Stability conditions of the synchronized chaotic attractors
A depend on the topological structure of chaotic attractorsG
of the one-dimensional mapf l ,p . We consider three charac-
teristic cases of attractors at the main diagonal.

A. One chaotic attractor A at the main diagonal

Let us consider (l ,p)PP so that the one-dimensional map
f l ,p has a single chaotic attractorG. In this case attractorA of
the two-dimensional mapFl ,p is as followsA5$21<x<1,
y5x%. It contains three fixed points O05~0,0!,
O(6)56(p2 l )/ l (p21), 6[p2 l / l (p21)] which can be
repelling nodes or saddles depending ond. These fixed
points specify upper and lower boundaries for symbolic se-
quences at the attractor. These sequences are stationary and
can be described as

PPP... for O~6 !

and

LLL... for O~0!,

where the following notation for symbolic sequences of the
trajectories is used. We giveP if uxu.1/l @and consequently,
f l ,p(x)5p# andL if uxu,1/l @and consequentlyf l ,p(x)5 l # is
given otherwise.

Strong stability takes place if and only if the trajectories at
the attractor corresponding to upper and lower boundary
symbolic sequences are both saddles, i.e., they should be
transversely attracting. In the case considered, it is equivalent
to the following inequalities with respect to variabled:

u l2du,1 O~0! is saddle,

up2du,1 O~6 ! is saddle,

which do not have common solutions for considered param-
eter rangesl.1 andp,21, so in this caseD15o” and strong
stability is impossible.

To get strong instability, considered fixed points must be
unstable nodes, i.e.,u l2du.1 andup2du.1. Therefore, as it
can be simply obtainedD45(2`,p21)ø(p11,l21)
ø( l11,̀ ). Complimentary region (p21,p11)ø( l21,l
11) corresponds to weak stability or instability depending
on negativeness or positiveness of the second Lyapunov ex-
ponentl2. Therefore, weak stability~instability! takes place
if and only if the parameter point (l ,p) belongs to the region
(p21,p11)ø( l21,l11) and, moreover,

u l2duup2du~m/12m!,1 ~.1!, ~8!

wherem5ml ,p($uxu>1/l %)5m l ,p([1/l ,1])/2.
In some cases~for some parameters valuesl and p! in-

variant measureml ,p can be constructed in explicit form,
which allows us to find analytically the values ofd at which
l2 crosses 0 and, hence, transition from weak stability to
weak instability takes place.

Example: Consider the cases of uniform probability den-
sity r(x)5const which occurs forp52 l /( l21)—the graph
of map f l ,p(x) is shown in Fig. 4~a! andp522l /( l21) in
Fig. 4~b!. ~Note, that in the last case invariant interval@21,1#
is not an attractor off l ,e , therefore, we can speak here on
weak or strong stability in the transverse direction only.!

In both casesr(x)51/2 for anyxP@21,1#. Therefore, in
the first casep52 l ( l21) weak~strong! stability condition
~8! is reduced to

u l2duU l

l21
1dU l21

,1 ~.1!. ~9!

There exist four rootsd5d( i ), i51,4 of the equation

ud2 l uU l

l21
1dU l21

51 ~10!

such that the regionsD2 of the weak stability andD3 of weak
instability are given as~Fig. 5!

D25~d~1!,d~2!!ø~d~3!,d~4!!
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and

D35~p21,d~1!!ø~d~2!,p11!ø~ l21,d~3!!

ø~d~4!,l11!. ~11!

Remark: Parametric pointsd5p andd5 l are of special
interest. If the coupling parameterd has one of their values,
one of the two transverse multiplicators is equal to zero. It is
a case of the so-called immediate attraction. Indeed, letd5 l
then, any initial point from the rectangle$uxu,1/l ,uyu,1/l %
is attracted to the main diagonal in one iteration. Analo-
gously, if d5p, any initial point from the regions$x,1/l ,
y,1/l % and $x,21/l ,y,21/l % is attracted to the main di-
agonal in one iteration. Nevertheless, in both these cases
only weak stability takes place, however, the basin of the
attractor does not have riddled structure as it takes place
when both transversal multiplicators are not equal to zero.

Generally, for any parameters (l ,p)PP bifurcation struc-
ture is the same as shown in Fig. 5, i.e., there exist four
bifurcation valuesd5d( i ), i51,4 satisfying Eq.~10! and
such that weak stability and weak instability regionsD2 and
D3 have form~11!. The bifurcation valuesd( i ), i51,4 are the
roots of the equation

u l2duup2du~m/12m!51, ~12!

wherem5ml ,p([1/l ,1])/2.

B. Two symmetrical one-piece chaotic attractorsA „1…

and A „2… at the main diagonal

If parameter point (l ,p) belongs to the subregion ofP0
given by $ l.1,2 l /( l21),p<(11(114l 2)1/2/2l % one-

dimensional mapf l ,p has two symmetrical chaotic attractors
G~1!5@11p( l21)/l ,1# and G~2!5$21,2@11p( l21)/l #%.
Consider the stability of the corresponding main diagonal
attractors A(1)5$x5yPG (1)% and A(2)5$x5yPG (2)%.
Due to the symmetry we can restrict ourselves to the consid-
eration of one of them, let us sayA~1!, ~results for the second
one would be the same!. Therefore, we have come to the
problem of the two coupled skew tent maps@20–23#.

Let us first consider strong stability and strong instability.
Symbolic bounds, in this case, are given by fixed point
O(1)5( l2p)/ l (p21) from one side and the maximal
period-k cyclehk with symbolic sequence

Lk21PLk21P... . ~13!

In the case of a skew tent map such a type of cyclehk exists
if and only if

p<2
l k2121

~ l21!l k22 , k52,3,... .

Therefore, sequence~13! presents an upper symbolic bound-
ary in the region

P0
~2!5H l.1, 2

l11

l
,p,

11A114l 2

2l J ,
P0

~k!5H l.1, 2
l k21

~ l21!l k21,p,2
l k2121

~ l21!l k22 J ,
wherek53,4... . Corresponding strong stability~instability!
conditions for any regionP 0

(k), k52,3... are given by the
system of inequalities

up2du,1
u l2duk21up2du,1

~.1!,
~.1!, ~14!

where (l ,p)PP 0
(k). In opposition to the previous case 1,

strong stability regionD1 is not empty and is given as
D15(s1 ,s2){p. For example, in the case when (l ,p)PP0

~2!

we can find that

s15
l1p2A~ l2p!214

2
s25

l1p2A~ l2p!224

2
.

Generally, bifurcation structure is analogous to the one
obtained in point 1 and is sketched in Fig. 6.d5s( i ), i51,4

FIG. 4. Graph of the functionf l ,p(x); ~a! p5
2 l /( l21), ~b! p522l /( l21).

FIG. 5. Stability regions of the single chaotic attractorA at the
main diagonalx5y.
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are the roots of the equation obtained from~14! by replacing
inequality to equality sign. Four bifurcation valuesd5d( i ),
i51,4 for the transition from weak stability to weak instabil-
ity are found analogically as in point 1 from the equation

u l2duup2du~m/12m!51, ~15!

where the measurem5m l ,p($uxu.1/l %).
After finding the roots we conclude that

D25~d~1!,s~1!!ø~s~2!,d~2!!ø~d~3!,d~4!!,

D35~p21,d~1!!ø~d~2!,p11!ø~s~3!,d~3!!ø~d~4!,s~4!!,

and

D45~2`,p21!ø~p11,s~3!!ø~s~4!,`!.

Example:At some parameter values invariant measure
ml ,p of the mapf l ,p can be easily constructed. Let us con-
sider, l5p/(12p2) which implies that trajectory of the ex-
tremum pointx51/l put into the fixed pointO~1! after three
iterations~see Fig. 1 where the graph off l ,p is plotted ex-
actly for this situation withl52p5&!.

In this case the probability density functionrl ,p is two-
piece constant with a break in the fixed point

r l ,p~x!5H l ~12p!

2p2~ l21!
,

l ~p21!

2p~ l -1!
,

xPF11
p~ l21!

l
,

p2 l

l ~p21!G
xPF p2 l

l ~p21!
,1G

and condition~15! for the transition from weak stability to
weak instability acquires the explicit form

Ud2
p

12p2Uud2pu~p
211/p221!51. ~16!

Equation~16! has four rootsd5d( i ), i51,4 which are in the
following regions:

d~1!P~p21,s~1!!, d~2!P~s~2!,p11!,

d~3!,d~4!P~s~3!,s~4!!.

Invariant measureml ,p , can, also, be simply constructed
when trajectory of the extremum pointx51/l goes into the
fixed pointO~1! not after three as above but after any finite
numberk.3 iterations~we mean the trajectory, all points of
which, except forx51 and x5O(1), are to the left of

x51/l !. Probability density functionr l ,p(x), in this case, is
(k2 l )-piece constant with the breaks at the points of that
trajectory except from the first points of it.r l ,p(x) can be
simply found from this condition giving us the possibility to
obtain the required measurem5m l ,p($uxu.1/l %) in the ex-
plicit form.

In Figs. 7~a!–7~d! examples of weakly stable synchro-
nized chaotic attractorsA~1! andA~2! are shown. It can be
easily noted@particularly at the enlargements in Figs. 7~b!–
7~d!# that in the neighborhood of both attractorsA~1! ~or
A~2!!, there are points which belong to the basin of the at-
tractor at the infinity~escape to infinity! and to the basins of
the other attractorA~2! ~or A~1!!. Moreover, basins of attrac-
tion of A~1! andA~2! are riddled by the basins of these two
different attractors.

In Fig. 8 we show the example of strong synchronization.
It can be seen that neighborhoods of bothA~1! and A~2!

belong to the basins of the appropriate attractors, i.e., both
A~1! andA~2! are asymptotically stable.

C. 2m piece chaotic attractorAm at the main diagonal

In the regionS\~PøP0! one-dimensional mapf l ,p has
two symmetrical 2m-piece chaotic attractorsGm

(6), wherem
can be any positive integer. Let us consider one of them
Gm5G m

(1), that atx.O~0! and study the stability of the cor-
responding 2m-piece chaotic attractorAm of the two-
dimensional mapFl ,p at the main diagonal. It exists if and
only if ( l ,p)PPm , where regionsPm are bounded by the
bifurcation curves pointed out in Sec. II.

Consider a 2m iteration of the mapf l ,p , i.e., f l ,p
q
, where

q52m ~Fig. 9! and let (l ,p)PPm . In each of its 2
m invariant

boxes,f l ,p
q
is a skew tent map, but having a one-piece chaotic

attractor. It means, that forf l ,p
q
in each such box, we have the

situation considered in point 1, moreover, slopesl m andpm
of f l ,p

q
are as follows:

l m5 l 2am21p2~am211~21!m!,

pm5 l ampam1~21!m,

where

am5 1
3 ~2m1~21!m11!,

m50,1,... . Therefore, the problem has been reduced to the
previous case. It allows us to obtain the following stability
conditions. Strong stability-instability bifurcations take place
when

u l2duamup2duam1~21!m51,

u l2du2~k21!am211amup2du2~k21!@am211~21!m#1am1~21!m51,
~17!

for P m
(k)5$( l ,p)PPm•( l mpm)PP 0

(k)%, m51,2..., k52,3...,
so that the condition for the weak stability-weak instability is
given by

u l2du2am211~m/12m!am

3up2du2$am211~21!m1~m/12m!@am1~21!m#%51, ~18!

FIG. 6. Stability regions of two symmetrical one-piece chaotic
attractorA~1! andA~2! at the main diagonalx5y.
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where

m5m lm ,pmS H uxu.
1

l J D

and (l m ,pm)PP0. Formulas~17! and ~18! have an explicit
form when the probability density functionr l ,p(x) can be
constructed.

It can be shown that Eq.~17! has four rootsd5d( i ),
i51,...,4, and Eq.~18! has eight rootsd5s( i ), i51,...,8 for
anym51,2,... so the bifurcation structure is as shown in Fig.
10. Different stability regions are as follow:

D15~s~1!,s~3!!ø~s~6!,s~7!!,

D25~d~1!,s~2!!ø~s~3!,d~2!!ø~d~3!,s~6!!ø~s~7!,d~4!!,

D35~s~1!,d~1!!ø~d~2!,s~4!!ø~s~5!,d~3!!ø~d~4!,s~8!!

and

D45~2`,s~1!!ø~s~4!,s~5!!ø~s~8!,`!,

where roots of Eq.~18! are ordered in the following
way: s( i ),s( i1 l ), i51,7.

In comparison with a one-piece chaotic attractor,
2m-periodic chaotic attractors~at the main diagonal! have
two d regions of strong stability.

V. CONCLUSIONS

We developed analytical conditions under which two lin-
early coupled one-dimensional piecewise linear endomor-

FIG. 9. Graph of the functionf l ,p
2m(x).

FIG. 7. Weak stability of chaotic attractorsA~1! andA~2!, ~a!
l52p5&, d15d2521, ~b! enlargement of~a!, ~c! l51.5, p5
22.4,d15d250.65, ~d! enlargement of~c!.

FIG. 8. Strong stability of chaotic attractorsA~1! andA~2!; l5
2p5&, d15d250.95.

54 3291DIFFERENT TYPES OF CHAOS SYNCHRONIZATION IN . . .



phisms showing chaotic behavior can be synchronized. Syn-
chronization regions for a two-dimensional map were
computed based on the critical point images and probability
density function of the corresponding one-dimensional map.

Our analytical conditions depend on the invariant measure
of a one-dimensional map. Such measures can be easily con-
structed when the probability density function is known or
can be simply estimated numerically. It should be mentioned
here that this approach is much simpler than classical esti-
mation of synchronization regions based on Lyapunov expo-
nents.

Depending on the coupling parameters, the synchronized

state is characterized by different types of stability. In the
case of weak synchronization, the attractor of the synchro-
nized state is not asymptotically stable, i.e., in any neighbor-
hood of it there is the positive measure set which belongs to
the basin of the other attractor. Typically, this other attractor
is dense everywhere in the basin of the original one. In this
case synchronization cannot be guaranteed for all slightly
different initial conditionsx0Þy0 and small perturbations to
the synchronized state can permanently desynchronize both
subsystems. Therefore, this type of synchronization leads to
the appearance of the riddled basins and a weakly stable
attractor can play the role of a ‘‘generator’’ of riddled basins.

Strong synchronization is characterized by an asymptoti-
cally stable attractor of the synchronized statexn5yn . Syn-
chronization can be achieved for all nearby initial conditions
x0Þy0 and when systems are synchronized they cannot be
desynchronized by small perturbations. Finally, we would
like to point out that the system of two linearly coupled
piecewise linear endomorphisms can be easily adapted to
further studies of both synchronization and riddled basins
phenomena.
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