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Different types of chaos synchronization in two coupled piecewise linear maps
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Dynamics of a four-parameter family of two-dimensional piecewise linear endomorphisms which consist of
two linearly coupled one-dimensional maps is considered. We show that under analytically given conditions
chaotic behavior in both maps can be synchronized. Depending on the coupling the parameters chaotic attrac-
tor’'s synchronized state is characterized by different types of stait063-651X96)11409-4

PACS numbd(s): 05.45+b

[. INTRODUCTION totically stable attractor if it is Lyapunov stable aBjA)
contains the neighborhood #&f.

Recently it has been shown that two identical chaotic sys- In this paper we consider the dynamics of a four-
tems x'=f(x) and y'=f(y) or x,.,=f(x,) and parameter family of two-dimensional piecewise linear endo-
Ynr1=Tf(yn) can synchronize, i.e|x(t)—y(t)|—0 ast—c  morphism
or |X,—Yn|—0 asn—w [1-10]. Such synchronization has

- : e ot l—p 1 1
Flolteinlt:lﬂal practical applications in secure communication Xy 1= PXo . ( X, + I_‘_ X~ T +dy(Yn—Xy),
Consider the two-dimensional system |
-p 1 1
Xn+1:fl,p(xn)+dl(YH_xn)’ Yn+1=PYnTt 2 ( Ynt I_‘_ yn_l_ +d2(xn_yn)a
)
Yn+1=T1,p(Yn) +d1(Xn=Yn) @ which consists of two linearly coupled one-dimensional

maps being a generalization of a skew tent map. Chaotic
attractors of a skew tent map have been consider¢dlin
24,28.

Dynamics of two coupled maps have been investigated in
several papers, for examplg25-27. A system of two
coupled tent maps has been investigated by Pikovsky and
Yn+1=T1p(Yn), 2) Grassberg€25]. They found that even when a system has a
stable synchronized state, the basin of attraction can be
densely filled with periodic points so the attractor is not as-
ymptotically stable. The dynamics of several endomorphisms
of the plane constructed by coupling of two logistic maps
was considered by Gardiet al.[26]. They used the concept

consisting of two linearly coupled identical one-dimensional
subsystems governed by

Xn+l:fl,p(xn),

wherex,y R, | andp are systems parameteds,, coupling
parameters,|,p,d; ,eR. Assume thatx,,,;=f(x,) and
Yns1=f(y,) have a one-dimensional chaotic attractor
In the synchronized regime the dynamics of systéjris
restricted to one-dimensional invariant subspagey,, so

otic attractorA in two-dimensional phase spafks,16. Let
A be a chaotic attractor. The basin of attractig(A) is the
set of points whose-limit set is contained irA. In Milnor’s
definition[14] of an attractor the basin of attraction need not
include the whole neighborhood of the attractor, i.e., we carg
say thatA is a Milnor attractor if 3(A) has a positive Le-
besgue measure. For example, a riddled bd$r-18 which

The outline of this paper is as follows. Section Il recalls
some fundamental properties of the one-dimensional map
Xnt1= 1 p(X,) considered. In Sec. Il we describe general
roperties of the two-dimensional m&p). We give analyti-
al conditions under which chaotic behavior in both maps
can be synchronized. Some particular examples are discussed
in Sec. IV where we additionally show that, depending on

has recently been found in practical physical system§he coupling parameters, the synchronized state is character-

[19,20, has a positive Lebesgue measure but does not con; : " : :
tain any neighborhood of the attractor. In this case an attrac?zed by different types of stability. Finally, we summarize

tor A is transversely stable in the invariant subspagey,, our reslts in Sec. V.
but its basin of attractioB(A) may be a fat fractal so that
any neighborhood of the attractor intersects the basin with a
positive measure, but may also intersect the basin of another Let f=f, ;:R—R be a one-dimensional map of real line
attractor, with a positive measure. Attractdris an asymp- into itself in the form

II. ONE-DIMENSIONAL MAP
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solutely continuous with respect to the Lebesgue measure,
with a supporf™ {UT (). Let p(x) be a probability density
function, i.e.,

-

S m,p(J)=Lp(X)dx

e for any measurable sdt[—1,1].
2 At the bifurcation pointd",,.;— I, given by the relation

f(x)

T — 18]
Vi
V7

A |(-) l("')

plm+1l9m4+(—1)™(p—1)=0, m=0,1,...
e where §,, are obtained from the recurrent relation
e ] Smi1=28m+3[1+(—1)™], m=0,1,...

e and &,=1, probability density function is constant at any
/ component ofl',,, ;, hence its values are inversely propor-
tional to the length of the componefthe measure of each
X component ofl, ; is equal to &"*1).

Consider the bifurcatiol’;—I'y which takes place at

-

. N I=p/(1—p?). In this case the fixed point has coordinate
FIG. 1. Graph of the functiof p(x); 1==p=v2. x{M=(p—1)/1(p—1), and it can easily be shown that
(I—p)( 1 1‘ p(l-1) p-1 p—I 1
fi X X+ ——— | [X+—|—|X— ], 4 L =_
X P T I l @ “([” I 1(p-1) I(p—l)’l) 2
where parameterisand p are the slopes. A graph df ,(x) and
is shown in Fig. 1. When
([ p(1-1) 1} p?—1
w1+ = || =Sz
2l I I 2p
(,p e = 1>1,-—<p=-1
1 p2+1
T =2
f, , maps interva[—1,1] into itself. If P
2l | M
(pell ={1>1-=<p=-1= I pi1
([ p(1-1) }D p*—
the whole interva[—1,1] is the chaotic attractor which will H [

be denoted by'. Otherwise, i.e., when

IIl. TWO-DIMENSIONAL MAP:
DIFFERENT TYPES OF THE STABILITY
(1Lp) 2 _E \H ’ OF SYNCHRONIZED CHAOTIC REGIMES

Let us consider a two-dimensional endomorphism

fi,» has two symmetrical chaotic attractdrs’ and1*" F=F,, (continuous noninvertable mppf the plane into
the intervals | =[1+p(I—1)/1,1] and 10 )=[—1 1 itself, of the form

—p(I=1)/1]. In this case mag, , can be considered as a

generalization of the skew tent map investigated[24— y f p(X)+di(X—y)
24,28, Plex) T p(y) +daty—x) )
Depending on parametersaandp each of these attractors '
is a cycle of 2' chaotic intervals )=1{", m=0,1,2,.. wheref, , has been defined in Sec. | adg,eR' are cou-

Later we will omit the symbokt so that it does not cause pling parameters. Whad]lz 0 mappings along andy axes
misunderstanding. Formulas for the parameter regiomre independent. Such a type of an uncoupled map will be
(I,p) e I1,,, of the existence of attractoi%; can be found in  denoted byF Iop), ie.,
[21-24. Merging bifurcationI",, ;— 1Ty, is caused by the
appearance of a trajectory homoclinic to the point cygle ). fi p(X)
of the period 2\ In Fig. 1 the functionf, , is plotted in the Fip: fio(y))
casel = — p= /2 when the bifurcation’;—I', takes place. '

For any (,p) €= the mapf, , has in the interval—1,1]a  Let (I,p) €3, thenF {9 has an invariant squate<|, where
“good” invariant measure denoted y=y , which is ab-  1=[—1,1]. If additionally (I,p) II, this whole square is a

X
y—>
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J

FIG. 2. Attractors of the map {9, (I,p) eIloxT,.

chaotic attractor. Letl(p) Iy, than F(9) has four sym-
metrical chaotic attractora!, i=1,4 insidel x| shown in
Fig. 2.

If (1,p) € I, F{% has 4x2™ symmetric chaotic attrac-
tors being cycles of chaotic squares of the peridt(the
so-called period 2 chaotic attractods

As the computers experiment presented in Figa)-33(d)
shows, such types of attractors are preserved at small cou-
pling |d; J/<1—Fig. Ja), but they disappear when coupling
increases—Figures(B®)—3(d). First attractors far from the
main diagonalx=y, i.e., A? and A¥ are destroyed—Fig.
3(b). Next the survived attractorA®™ and A® merge
together—Fig. &). In Fig. 3d) we observe thax=y, i.e.,
chaotic trajectories ok andy subsystems are synchronized
and two-dimensional attractors Bf , are reduced to the two
symmetrical one-dimensional attractors at the main diagonal
x=Yy. It should be mentioned that the main diagoxaly is
invariant with respect td- , for anyd, , and the mapping
along it coincides withf; ;. As a resultF, , has one eigen-
directionu;=(1,1) which is parallel to the main diagonal, its
multiplicator coincides with the multiplicator df ,

1
|, |X|<|—,
V= 1
P x>,

and, therefore, the first Lyapunov exponeat is always
positive.

The second eigendirectionu,=(d;,—d,) (exists if
|d,|+]|d,|#0) is also invariant for any point of the main
diagonal. Its multiplicator is also given in an explicit form

FIG. 3. Attractors of the mapF ,; 1=1.5, p=-2.4; (a

d1=d2=01,(b) d1=d2=025,(0) d1=d2=03, (d) d1=d2=06

1

I_(dl+d2) |X|<I—

Vo= I
p—(d;+dy) |X|>|—.

The property of parallelness of the second eigendirection for
any point of the main diagonal allows us to obtain the con-
dition for stability of the chaotic attractor at the main diago-
nal, which can be written as

5) wher_e_,u,=/L|]p({|x|_>1/I 1). One can easily check that it is a
condition of negativeness of the second Lyapunov exponent
of the attractor.

No= (1= p)Inl = (dy+dy)[+u In[p—(d1+dy)[ <O,

()

which is an overaged Lyapunov exponent of the typical tra-
[l —(dy+dy)||p—(dy+dy)|#1# <1, (6) jectory on the attractor.
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Let us extract different situations related to the stability or PPP... for O(*)
instability of synchronized chaotic attractors on the main di-
agonal in the transversal direction. and

(1) Even if A,<<0, there can exist trajectories at the attrac- )
tor A, for which the second Lyapunov exponent is positive. LLL... for O™,

In this case we get the so-called weak stability so as the . . .
attractorA is the attractor in a weak Milnor seng#4], i.e., wh.ere the f(_)IIowmg notat!on.for symbolic sequences of the
there exist a nonzero measure set in any neighborhood of t aJ?f)tci“e]S;;ﬁ;ji)xvfﬂ“ﬁg d| )z:|o>nig [Sgr?ﬂcg:/on(s)gq_ule]r;gy,
attractor, points of which are not attractedAo This set is 1p(X)=P q e ™

typically dense in the neighborhood of the considered attrac?'Ven other\le_e_. . : . .

tor giving rise to the phenomenon of riddled basins. thesg?t?asgcf;?bélg?/r(tazk%?](Fj)ilgcetg aLTd Z?Iégéh?oaae]fcégﬂﬁzsrt
(2) If the second Lyapunov exponent is negative for aYsymbolic se uencesp are bgoth sa%%les i.e., they should ge

trajectory at the attractor we get the so-called strong Stabi"tyt'r)r:msversel cg:lttractin In the case consi,déré,d it i)s/ equivalent

Chaotic attractorA at the main diagonal is asymptotically o the foll y attr: g.l't' th t " i q

stable, i.e., it attracts all trajectories from some of its neigh-0 € foflowing Inequafities with respect to vanafle

borhood. _ _ _ _ [l-d|<1 09 is saddle,
(3) Analogically, if \,>0 there can exist trajectories at the
attractorA for which the averaged second Lyapunov expo- Ip—d|<1 0% is saddle

nent is negative. This case will be referred to as the weak

instability. This phenomenon is also called on-off intermit- which do not have common solutions for considered param-
tency[29] or attractor bubbling15]. eter range$>1 andp<—1, so in this cas®,=6 and strong
(4) At last, if there are no such trajectories for which the stability is impossible.
second Lyapunov exponent is negative we have strong insta- To get strong instability, considered fixed points must be
bility of the attractor on the main diagonal. unstable nodes, i.dl,—d|>1 and|p—d|>1. Therefore, as it
In the first two cases the considered attractor at the maigan be simply obtainedD,=(—«,p—1)U(p+1)—1)
diagonal can be called chaotic node, weakly attracting iny(l+1,c). Complimentary region g—1,p+1)U(l—1]
case 1 and strongly attracting in case 2. Analogically, the last- 1) corresponds to weak stability or instability depending
two cases are chaotic saddles, weak in case 3 and strong i negativeness or positiveness of the second Lyapunov ex-
case 4. ponent\,. Therefore, weak stabilityinstability) takes place
First, we introduce the following notation for regions of if and only if the parameter point (p) belongs to the region
different kinds of stability of the attractors at the main diag-(p—1,p+1)U(l—1,+1) and, moreover,
onal. Note that if slopek andp are fixed, stability depends

only on the sum of coupling parametats-d,+d,. Let us [l—d||p—d|*1 <1 (>1), (8
denote
whereu= g ({[x|=11}) = ,([1/1,1])/2.
D,={deR: strong stability takes plage In some case¢for some parameters valuésand p) in-
variant measureu, , can be constructed in explicit form,
D,={deR: weak stability takes plage which allows us to find analytically the values @fat which

N\, crosses 0 and, hence, transition from weak stability to
weak instability takes place.

Example Consider the cases of uniform probability den-
sity p(x) =const which occurs fop=—1/(l —1)—the graph

D;={deR: weak instability takes pla¢e

D,={deR: strong instability takes plage of mapf, ,(x) is shown in Fig. 48) andp=—21/(1—1) in
Fig. 4(b). (Note, that in the last case invariant inter{/all, 1]
IV. STABILITY CONDITIONS is not an attractor Of|’e, therEfore, we can Speak here on

weak or strong stability in the transverse direction only.
Stability conditions of the synchronized chaotic attractors |n both caseg(x)=1/2 for anyxe[—1,1]. Therefore, in

A depend on the topological structure of chaotic attrackors the first casgp=—1(I — 1) weak(strong stability condition
of the one-dimensional mafy ,. We consider three charac- (8) is reduced to

teristic cases of attractors at the main diagonal. -

<1l (>1). 9

_ o [I—d] ‘l— +d

A. One chaotic attractor A at the main diagonal -1
Let us considerl(p) 11 so that the one-dimensional map There exist four rootd=d®, i=1,4 of the equation

f| o has a single chaotic attractbr In this case attractok of

the two-dimensional map, , is as followsA={—1<x<1, I

y=x}. It contains three fixed points 0°=(0,0), |d_||mJrOI

OF) == (p—N)/I(p—1), =[p—I/I(p—1)] which can be

repelling nodes or saddles depending @nThese fixed such that the regiori3, of the weak stability and ; of weak

points specify upper and lower boundaries for symbolic seinstability are given agFig. 5)

quences at the attractor. These sequences are stationary and

can be described as D,=(d®,d@)u(d®,d®)

-1
=1 (10)
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fip ) A fl,p A
1 1
3 > 7 y > FIG. 4. Graph of the functiof ,(x); (8 p=
- A - —1/(1-1), (b) p=—21/(1—1).
-1
-1
a) b)
and dimensional mag, , has two symmetrical chaotic attractors
) , 5 I'O=[1+p(l—1)1,1] and T'O={-1~[1+p(—-1)/T}.
D3=(p—1dY)u(d®, p+1)u(l-1d?) Consider th(e )stability of (th)e corresp(or;ding main (di?gonal
+ = = + - = = -
U@, 1+1). (11) attractors A'"/={x=yeI'*"’} and A {x=yel'"7}.

Due to the symmetry we can restrict ourselves to the consid-
eration of one of them, let us s&f*, (results for the second
one would be the sameTherefore, we have come to the
roblem of the two coupled skew tent md@29—-23.

Let us first consider strong stability and strong instability.
Symbolic bounds, in this case, are given by fixed point
O =(1—-p)/I(p—1) from one side and the maximal
periodk cycle 7, with symbolic sequence

Remark Parametric pointsl=p andd=I are of special
interest. If the coupling parametdrhas one of their values,
one of the two transverse multiplicators is equal to zero. It i
a case of the so-called immediate attraction. Indeed &t
then, any initial point from the rectang{éx|<1/,|y| <11}
is attracted to the main diagonal in one iteration. Analo-
gously, if d=p, any initial point from the regiongx<<1/,
y<1N} and{x<—211,y<—1/} is attracted to the main di- Lk-1pLk-1p (13)
agonal in one iteration. Nevertheless, in both these cases
only weak stability takes place, however, the basin of then the case of a skew tent map such a type of cyglexists
attractor does not have riddled structure as it takes placg and only if
when both transversal multiplicators are not equal to zero.

Generally, for any parameterk, p) eIl bifurcation struc- Ik=1-1 B
ture is the same as shown in Fig. 5, i.e., there exist four pg_( —1)1k=2 k=23,.....

bifurcation valuesd=d®, i=1,4 satisfying Eq.(10) and

such that weak stability and weak instability regidbgand  Therefore, sequendd3) presents an upper symbolic bound-
D5 have form(11). The bifurcation valued,i=1,4 are the ary in the region

roots of the equation

[+1 1+ \1+4lI?
I —d|[p—d|+1w=1, (12) HE)2>=[I>1, N :
where =g o([1/1,1])/2. oy iy
(k) _ 3
o [|>1’ (-nic1-P= (|—1)|“]’

B. Two symmetrical one-piece chaotic attractorsA*)

and A at the main diagonal wherek=3,4... . Corresponding strong stabilitinstability)
If parameter point I(p) belongs to the subregion dI,  conditions for any regiodl{’, k=2,3... are given by the
given by {I>1—1/(I-1)<p<(1+(1+41%)Y%2l} one- system of inequalities

lp—d|<1 (>1), 14
dm  q@ A [I—d*Yp—d|<1l (>1), (14)
o m— o — T " " :
' ' ‘ where q,p)eHg . In opposition to the previous case 1,
p-1 p pti 0 -1 / J+1 o . . . .
strong stability regionD, is not empty and is given as
=) -weaksabily D1=(s1,S,) > p. For example, in the case wheht) eI1§
B - strong stabily we can find that
) - K instabilit
7 weak instability |+p_ (|_p)2+4 |+p_ (|_p)2_4
the rest of the line - strong instability Sl = 52 = .
2 2
FIG. 5. Stability regions of the single chaotic attracfoat the Generally, bifurcation structure is analogous to the one

main diagonak=y. obtained in point 1 and is sketched in Fig. &@l=s",i=1,4
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x=1/). Probability density functiom, ,(x), in this case, is
dM s @ 4@ s@ @ g @ (k—1)-piece constant with the breaks at the points of that

| trajectory except from the first points of ip; ,(x) can be
p-1 P p+1

d
Zam_ BB simply found from this condition giving us the possibility to
/

0 obtain the required measuge=p, ,({/x|>11}) in the ex-
1 -weakstability plicit form.
EEERME - strong stability In Figs. 7a)-7(d) examples of weakly stable synchro-
- weak instabilty nized chaotic attractor&™ and A are shown. It can be
the rest of the line - strong instabiliy easily noted particularly at the enlargements in Figgb)~-

7(d)] that in the neighborhood of both attractoA$™ (or
A, there are points which belong to the basin of the at-
tractor at the infinity(escape to infinityand to the basins of
the other attractoA™ (or A®). Moreover, basins of attrac-

are the roots of the equation obtained fr¢i) by replacing “9” of A” andA'™ are riddled by the basins of these two
inequality to equality sign. Four bifurcation valuds=d®,  different attractors. o
i =1,4 for the transition from weak stability to weak instabil- " Fig. 8 we show the example of strong synchronization.

i ) =)
ity are found analogically as in point 1 from the equation !t can be seen that neighborhoods of bath’ and A
belong to the basins of the appropriate attractors, i.e., both

1—d||p—d|®i-m=1, (15 A andA'") are asymptotically stable.

FIG. 6. Stability regions of two symmetrical one-piece chaotic
attractorA™) and A at the main diagonat=y.

where th_e measurﬁ=,u|,p({|x| >11}). C. 2™ piece chaotic attractor A™ at the main diagonal
After finding the roots we conclude that ) ) )
In the region2\(IT1UII,) one-dimensional mayg, , has

D,=(d®,sM)u(s?,d@yu(d®,d@), two symmetrical 2-piece chaotic attractorE(;”), wherem
can be any positive integer. Let us consider one of them
Dy=(p—1dM)Uu(d?,p+1)u(s®,d®)ud®,s), I',=T", that atx>0"© and study the stability of the cor-
responding 2-piece chaotic attractorA,, of the two-
and dimensional magr, , at the main diagonal. It exists if and

only if (I,p) eIl,,, where regiondl,, are bounded by the
bifurcation curves pointed out in Sec. II.

. . ; ; : - q
Example: At some parameter values invariant measure COHSIQEW a 2 iteration of the magf ,, €., f':P’ Where
w.p of the mapfi » can be easily constructed. Let us con-d=2" (Fig. 9 and let (,p) e Il,,,. In each of its 2 invariant

sider,1=p/(1—p?) which implies that trajectory of the ex- boxes,fﬁp is a skew tent map, but having a one-piece chaotic

intx = i i ino™
tremum pointx =1/ put into the fixed poinD " after three  ,ya0tor. It means, that fdf , in each such box, we have the
|terat|ons(§ee Fig. 1 where the graph 6f, is plotted ex- gy ation considered in point 1, moreover, slopgsand p,,
actly for this situation with = —p=v2). q

of f; , are as follows:

In this case the probability density functign, is two-
piece constant with a break in the fixed point

Dy=(—o,p—1)U(p+1s¥)U(s¥,e).

= 2am_1p2(am_1+(—1>m>’

(1-p) p(l-=1)  p—I o
N L T R I Y pr=1mpen (-4,
P pX)= _ _
P Ip=1) Xe Pl } where
2p(I-1)’ I(p—1)’ . o
am=3(2"+(=1)M"),
and condition(15) for the transition from weak stability to
weak instability acquires the explicit form m=0,1,... . Therefore, the problem has been reduced to the
previous case. It allows us to obtain the following stability
2. 1302 conditions. Strong stability-instability bifurcations take place
d- 1-p? jd=pPTHPTE=1, (16 when
Equation(16) has four rootsl=d(", i =1,4 which are in the || —d|em|p—d|om* (D=1
following regions:
I—d 2(k—ay_1+aem —d 2(kf1)[am_1+(71)m]+am+(71)m:l,
dVe(p-1sY), d?e(s?,p+1), -l lp=d 1
17
d®,d? e (s,sY). for ITX={(1,p) e M (I wpr) e IT P}, m=1,2..., k=2,3...,

. . so that the condition for the weak stability-weak instability is
Invariant measurey, ,, can, also, be simply constructed given by

when trajectory of the extremum poirt=1/ goes into the

fixed pointO™) not after three as above but after any finite || —d|2em-1F (W1 pam

numberk>3 iterations(we mean the trajectory, all points of

which, except forx=1 and x=0(*"), are to the left of X |p—d|2em-1t (=DM (- plamt (D= g (18
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2 R 2
2 2 2 X 2

FIG. 8. Strong stability of chaotic attractofs™ andA™; |=
7p=\/2, dl:d2:095

and (,,,pm) €lly. Formulas(17) and (18) have an explicit
form when the probability density functiop ,(x) can be
constructed. _

It can be shown that Eq17) has four rootsd=d®,
i=1,...,4, and Eq(18) has eight rootsi=s, i=1,...,8 for
anym=1,2,... so the bifurcation structure is as shown in Fig.
10. Different stability regions are as follow:

D1=(s,s®)u(s®,s7),

D,=(d®,5?)U(s®,d?)U(d?®,s®)u (s, d@),

Do=(sV,d)U(d?,s®) U (s®,d®)u(d?,s®)
and
D= (—=,sM)U(s?,s®)U(s®) ),

where roots of EqQ.(18) are ordered in the following
way: stV<s(*h j=17.

In comparison with a one-piece chaotic attractor,
2M-periodic chaotic attractorgéat the main diagonalhave
two d regions of strong stability.

V. CONCLUSIONS

We developed analytical conditions under which two lin-
early coupled one-dimensional piecewise linear endomor-

f/,p i *

1

0.7 0.8

FIG. 7. Weak stability of chaotic attracto’s™ and A™, (a)
|=—-p=v2, d;=d,=—1, (b) enlargement ofa), (c) |=1.5, p=
—2.4,d,=d,=0.65,(d) enlargement ofc).

where

K M'm'pm([| | I ]) FIG. 9. Graph of the functioi ().
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state is characterized by different types of stability. In the

stgMs@ & @AW s®g®s® Ny O case of weak synchronization, the attractor of the synchro-
d nized state is not asymptotically stable, i.e., in any neighbor-

hood of it there is the positive measure set which belongs to
the basin of the other attractor. Typically, this other attractor

— :::::::ﬁy is dense everywhere in the basin of the original one. In this
— case synchronization cannot be guaranteed for all slightly
CEZER - weskinsanily different initial conditionsx,#y, and small perturbations to

the rest of the line - strong instability the synchronized state can permanently desynchronize both

subsystems. Therefore, this type of synchronization leads to
FIG. 10. Stability regions of two symmetrical two-piece chaotic the appearance of the riddled basins and a weakly stable
attractorA{™) andA(~) at the main diagonat=y. attractor can play the role of a “generator” of riddled basins.
Strong synchronization is characterized by an asymptoti-
phisms showing chaotic behavior can be synchronized. Syrf:-aIIy §taple attractor of t.he synchronized S“i‘“?f Yn- Syr_1—.
chronization regions for a two-dimensional map wereChronization can be achieved for all nearby initial conditions

" L i+ Xo# Yo and when systems are synchronized they cannot be
computed based on the critical point images and pmbab”%esynchronized by small perturbations. Finally, we would

density function of the corresponding one-dimensional map_.

Our analytical conditions depend on the invariant measurgl.(e to_point out that the system of two Ilnegrly coupled
of a one-dimensional map. Such measures can be easily co lecewise linear endomorphisms can be easily adapted to

structed when the probability density function is known or urther studies of both synchronization and riddled basins

can be simply estimated numerically. It should be mentionetﬁ)henomena'

here_: that this appr(_)ach is ml_Jch simpler than classical esti- ACKNOWLEDGMENT

mation of synchronization regions based on Lyapunov expo-
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