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Hopf Bifurcation in Rotors Supported in Gas Bearings 
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Division of Dynamics, Technical University of Lodz, Stefanowskiego l/15, 90-924 todz, Poland 

Abatraet--In this paper we describe a problem of control of the Hopf bifurcation. We illustrate the 
problem by three examples of a rotor system supported in two gas bearings. The bearing bushes are 
connected to the casing by means of additional air rings. In the case when parameters of the air ring 
are improperly chosen, at a sufficiently high rotational velocity the rotor undergoes the Hopf 
bifurcation and the bearing may be damaged by the growing amplitude of self-excited vibrations. We 
may avoid this danger by a proper selection of stiffness and damping coefficients of the air ring or, in 
the worst case, by a temporary change of the stiffness or damping coefficients of the air ring. Our 
method then guarantees a safe passage through the unstable zone between the Hopf and reversed 
Hopf bifurcation points. 0 1997 Elsevier Science Ltd 
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inertial moment of rotor 
inertial moment of joint bushes 
radial clearance of bearing [m] 
radial clearance of air ring [m] 
damping coefficients of gas film 
damping coefficient of elastic support 
static loading of rotor 
stiffness coefficients of bearing 
stiffness coefficient of elastic support 
half of the distance between bearings 
half of the distance between dampers 
half of the distance between springs 
length of bearing and air ring [m] 
mass of rotor 
mass of joint bushes 

Pa 
PO 
RI 
R2 
h 
h2 

atmospheric pressure IN/m21 
supply pressure [N/m ] 
radius of bearing [m] 
radius of air ring [m] 
radius of feedholes of bearing [m] 
radius of feedholes of air ring [m] 
dimensional time [s] 
displacement of journal related to c, 
displacement of bush related to c, 
bearing number (dimensionless rotational 
velocity) 
gas viscosity [Ns/m] 
time 
dimensional rotational velocity [rad/s] 

1. INTRODUCTION 

The vast majority of the numerous efforts put into the study of dynamical systems in the past 
20 years or so have been devoted to long time behaviour of the solutions and to the 
character of the asymptotic attractors of the system. The tools and techniques of the 
quantitative description, such as Lyapunov exponents and various invariant measures, have 
naturally been driven by the need for characterization of these attractors, and relatively little 
attention has been paid to the transient behaviour of trajectories during their progress from 
initial conditions to the appropriate attractor. Nevertheless, in a wide range of physical 
contexts, properly modelled by dynamical systems, the practical interest lies precisely in this 
behaviour; indeed, the asymptotic attractor may not even be closely approached during the 
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time interval of interest. In mechanical systems, such as those involving rotating components. 
I( is common for the approach from an initial state to a final. often quite simple, state 
described by a fixed equilibrium point or limit cycle, to pass through the regions of phase 
space which are quite unacceptable for the user. Thus. a rotating shaft may develop large 
oscillations and coltide with its bearing whilst slowing down to rest. In such situations the 
control of (perhaps chaotic) transients is required. A number of methods by which 
undesirable chaotic behaviour can be controlled or eliminated have been developed 1 l-lo]. 
Marc speculatively. they indicate ways in which the existence of chaotic behaviour may bc 
directly beneficial or exploitable. Some of these methods have been successfully applied in 
engineering systems [ 1. 2. 5, 71. 

Chaos controlling methods, like most of the results in the theory of dynamical systems, 
have an asymptotic character [ 1 l-131. i.e. under given conditions a dynamical system with 
specified parameters behaves in a particular way when r~+ *L. Because many real systems. 
like the rotor system mentioned above. are characterized by some values of parameters only 
for finite time. these controlling methods cannot always be practically implemented and 
there is a need to develop ehicient methods for control of transient non-linear effects. 

In this paper WC investigate the problem of practical control of the Hopf bifurcation. We 
consider a particular but representative example of such a situation. For II = (I,. which is a 
desired working condition. let the dvnamical svstem 

where .V E R”, (I E R”’ (n. ))I I.?....) is a vector of system parameters. be characterized hy 
steady-state behaviour (i.e. 1 = 0 is a stable fixed point for u L tr,). Suppose further that to 
reach practically the vaiue (I z-u,, from (I - (I, (the starting point), 17 has to go through the 
mterval (u,.u?], and then, for (A E [u,,~~j, the steady state s = 0 of the dynamical system (1) is 
unstable as the svstcm undergoes the Hopf bifurcation at (I = (I, and reversed Hopf 
bifurcation at (I - t,?. WC try to answer the following question: can we safely reach the 
desired working condition (I -: (I,, or do we have to restrict ourselves to the parameter range 
il (1 i.) 

2. CONTROLLING PROCEDURE 

I‘bc situation dcscribcd IS characteristic tar rotor systems where the rotor rotational 
vclocitv \ i\ ;j svstcm paramctcr which has to increase contir,uousiy from its starting value 
\ 0 to \ 1 \,,‘(desired working conditions). when in the interval [,\,.4J. whcrc :I,,: a. \,. 
lhc ~tcadv state \ 0 is unstable. 4 passage through this interval. as exemplified in Fig. I. is 
associated with an incrcasc in the amplitude of rotor vibrations as at 2, the self-excited 
vibrations originate and arc added to small oscillations due to unbalance. At the value ;\.? the 
self-excited vibrations decrcasc. and the amplitude of vibrations stabilizes at the final value. 
In the majority of practical systems the interval (:I,. .I>) cannot bc passed safely. and the 
self-cxcitcd oscillations can damage the system at .\ ---- .I,, (Fig. 2) as the acceptable increase 
in the vibration amplitude is limited by the design restrictions. 

The easiest way to avoid the danger of the system damage is to design it in a way which 
completely eliminates the Hopf bifurcation from the system operation in the whole range 
(.I.. :I\,). As follows from our numerical investigations concerning rigid rotors supported in 
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Fig. 1. Unbalanced and self-excited vibrations of a mechanical system. 

gas journal bearings, in some cases it is not possible to design the system in such a way. 
Then, the transient behaviour in the dangerous zone has to be controlled so that it may be 
passed safely. In this case we propose a simple method which is based on a small temporary 
change of one of the other components of the vector a of system parameters, which allows us 
to stabilize the fixed point x = 0. When the dangerous zone is passed, the vector a returns to 
its initial value. In the controlled system the passage through the dangerous zone is shown in 
Fig. 3. 

3. OBJECT OF CONSIDERATIONS: ROTOR SUPPORTED IN GAS BEARINGS WITH 
ELASTICALLY MOUNTED BUSHES 

Let us consider a system (Fig. 4) which consists of a symmetrical rigid rotor supported in 
two gas bearings. The combined base of both the bearing bushes is connected to the casing 
by means of linear springs K, and viscous dampers Cr. The force 2F, is an external static 
load acting on the rotor, so F, is the static response of the bearing to the force 2F,. The full 
dynamics of the system was considered in Refs [14-181. Here we describe only one particular 
case as the illustration of our method of elimination of self-excited vibrations from the 
system operation. 

As follows from the references mentioned above, the elastic support K,, C, of the bearing 
bushes makes it possible to avoid self-excited vibrations when values of these coefficients are 
properly chosen. The main problem is how to design such an elastic support. Our 
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Fig. 4. Rotor supported in gas bearings with bushes mounted in springs and dampers. 

proposition is to introduce an additional air ring 6 (Fig. 5) round each of the bearing bushes 
3. As the bushes do not rotate, these rings must of course be externally pressurized. As 
follows from our previous considerations, the chamber feeding system must be employed, in 
which the air goes from the compressor through the orifices rdl (or rd2) into chambers 1, and 
then through the feedholes r O2 into the gap of the air ring. The dependence between the 
displacements xr, y, of the bush from the static equilibrium position and the resulting 
dynamic increments in the force are given as 

while in the supporting system from Fig. 4 they are 

I- 

-r-r-------- 

(2) 

(3) 

Fig. 5. Air ring: a design of an elastic support of a bearing bush (1: chamber, 2: casing, 3: bush, 4: rotor, 5: bearing 
gap, 6: air ring). 



As the bush does not rotatc. the cross-coupling cocfticients C’,:, C‘.,,. K,?, K:, arc 
negligibly small and. as the bush-casing eccentricity ratio is less than 0.25. the main 
coefficients C‘, , == (‘J2 and K,, ;-- KY,,. We may also assume that (approximately) for the air 
ring the following equation is satistied: 

which is similar to eqn (3). This assumption allows us to predict, from calculations 
concerning the system with linear springs K,, and viscous dampers C,. what values of the 
stiffness and damping coefticicnts of the designed air ring will ensure the steady-state 
stability. 

The data of the air ring considered are as follows: length L = 0. I1 m, radius R2 = 0.065 m, 
radial clearance cz = 30 x IO ” m, air viscosity p y; 18.2 x 10 “kg m ’ s ‘. The feeding 
system consists of I6 feedholes. located in two rows at l/4 and 3/4 of the length of the ring. 
supply pressure ijo = 0.7 X IO” P a. radius of the orifices r,, = 0.15 X IO ‘m or I .O X 10 ‘m. 
radius of the feedholes r,,? = I .O x IO ‘m. 

Two parameters of the feeding system decide about values of the main stiffness and 
damping coefficient of the air ring: the volume of the chambers and the radius of the orifices. 
‘The volume of the chamber V -= I?‘&, is proportional to the height hk as the radius 
r = 5.0 x 10. ’ m is constant. Figure 6 shows the values of C‘, , and K,, as functions of the 
frequency of vibrations v for three different values of the chamber height hk = 0.03. I.0 and 
9.0 X IO ’ m. As can be seen. for small values of II, 0.03 m. the damping coefficient is 
positive but very small and the stiffness coefficient is relatively big (K,, = 17). An increase of 
the volume of the air chambers at first causes the ‘air hammer’ phenomenon (C, , < 0) to 
appear for small values of V. Furthermore. the C , , values increase and the ‘air hammer’ area 
shifts below the natural frequencv range of the investigated rotor. Concurrently. one can 

Pie. h. Ctilincsz and dampine coeffic~cnts of air rung (I,, 0 15 IO m) 
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Fig. 7. Stiffness and damping coefficients of air ring (h, = 6.0 X lo-’ m), 

observe a significant decrease of the stiffness coefficient value K, ,. Figure 7 shows how the 
radius of the orifice r, influences the stiffness and damping coefficients. Enlargement of r, 
causes an increase of the K,, coefficient. In the region of higher frequencies one cannot 
observe any influence of the radius of the orifice on the damping coefficient values. In the 
neighbourhood of the ‘air hammer’ region when the rd value decreases, one can observe the 
sudden diminishing of C,, and the ‘pneumatic resonance’ phenomenon. It is intelligible 
because, when the radius of the orifice increases, the pressure in the chamber is closer and 
closer to the supply pressure p,,, which means that the chamber feeding system operates in 
the same way as the direct action feeding system. One cannot observe the ‘pneumatic 
hammer’ phenomenon in the direct feeding systems. 

4. EXAMPLE I 

In our first example we consider the rotor whose data are: mass m = 0.42, moment of 
inertia B = 42, distance between the bearings 2Z= 34.6. The parameters of the bushes 
(combined by a common base) are: mass mp = 0.12, moment of inertia B, = 36, distance 
between the springs and dampers 21K = 21c = 21. The rotor is supported in the externally 
pressurized bearings whose data are: length L = 0.11 m, radius R, = 0.055 m, radial clearance 
c, = 30 X 10-‘m. The feeding system of the bearings consists of 16 feedholes (radius 

- 1.0 X lo-’ m), located in two rows at l/4 and 3/4 of the length of the bearing, supply 
Fieisure p. = 0.7 X 10h Pa. The rotor is loaded by its weight 2F, = 7. 

Figures 8 and 9 show the stability maps of the system for three selected values of the 
stiffness coefficient K, = 4, 8 and 16, and for various values of the damping coefficient C,. 
Figure 8 shows the regions (hatched) where the self-excited vibration of cylindrical modes 
appear, and Fig. 9 presents the regions of the self-excited vibrations of conical modes. 

When the bearing bushes are supported in the air rings with rd = 0.15 X 10e3 m and 
hk = 0.03 X lo-” m, the stiffness coefficient K,, = 16 and the damping coefficient C,, = 0.06 
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, 

FIN 8. Stability map of rotor supported in gas bearmgs with hushes mounted in springs and dampers: vibrations 
with cylindrical modes 

(see Fig. 6). As we can see from Figs 8 and 9, for these values of K, and C, at the rotational 
velocity A = 5, the self-excited vibrations with cylindrical modes appear. This fact is 
confirmed by Fig. IO(a). which shows the real (q,) and imaginary (v,) parts of four basic 

K,=4 I 
K,=8 1 -.---. Kp= 16 j 

I /I’ ,’ ,,’ ’ 1’ unstable 1 
,,’ , / _’ regions j 

I?!. Y. Stability map of rotor supported m gas bearings with bushes mounted in springs and dampers: vibrations 
with conical modes 
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Fig. 10. Eigenvalues Ai = 7, +jv, of rotor with bushes supported in air ring, r, =0.15 X lo-‘m: (a) hk := 
0.03 x 10e3 m, (b) h, = 1.0 X lob3 m, (c) h, = 9.0 X lo-” m. 

eigenvalues of the system in which the springs K, and the dampers C, are replaced by the 
described air ring: at A = 5 the real part qlcYl changes from negative to positive, i.e. the 
steady state becomes unstable. Additionally, if it were possible to increase A over A = 5 
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(without damage to the bearings). at A = 8, vibrations with conical modes would become 
unstabk (7) Ic,,n,c becomes positive). 

When we increase the volume of the chambers (hk = 1 .O X 10 ’ m). the basic fret 
cylindrical and conical vibrations of the system are in the range 2 < v < 3.5. This means (Fig. 
6) that the stiffness coefficient K,, = 8 and (which is most important) the damping coefficient 
C‘!, is negative. The system undergoes the ‘pneumatic hammer’ phenomenon and, as can be 
seen from Fig. 10(b), the real parts v,,.\,. T,~,, of vibrations with cylindrical modes are 
positive in the whole range of A. 

The air ring is designed properly when hk = 9.0 x 10 .‘rn. For this case, the basic free 
cylindrical and conical vibrations of the system are in the range 1.7 < v < 3, so (set Fig. 6) 
the stiffness coefficient K, , = 4 and the damping coefficient C,, ==0.8. For K,, = 4 and 
C’,, =y 0.8. no unstable regions can be observed in Figs X and 9. This fact is confirmed in Fig. 
IO(c). all the real parts of four basic eigenvalues arc negative. We have eliminated 
self-excited vibrations from the system operation. 

S. EXAMPLE II 

..\s our second cxamplc, we show rhc stability problem of the rotor whose parameters arc 
ii\ folh~: mass IPI 0.42. moment o!‘ Inerti;i H -- IX. distance between the bearings 
.’ #!. .;4 o. .l‘hc paramclsrs of lhc hushes (combined by ;I common haso) arc: mass NI,, = 0.12. 
moment ~jf inertia 11,. X3. distance between the springs and damper> 21, ; 21,. -= 21. The 
paramctcrs 01 the hearings are: length 1 0.1 1 In. radius Hi = 0.055 m. radial clearance 

ilI III “m. hut this time the hearings XC self-acling. As in Example I. the rotor is 
lrudcd bv Ihc> \vcighr 71,‘. - 

l.igurl:- I 1 <how\ ;I stability map 01’ ihcl systcnl !or Iwo \clcctcd values of the stift‘ncss 
~‘osfficicnl ti,, .i; and Ih. ;md lor various value\ 01’ Ihc damping coefficient C‘,,. In this 
cxamplc. paramercr\ ot the rotor have been sclectcd in such ;I wav that the system has ~hc 
UIIK c:igcnvalucs ‘13 cvlindrlcal and conical mode>. ,A> wc cm SC; from Fig. 11, when the 
q\iffncs\ coefficient K,. i 6. 11 wide unstahk region cxIsta for anq’ value of the dampmg 
,.ocfticicIlt C,.. If UC support the bearing hushc~. in the ;lir rings with Al, .m- 6.0 x 10 ’ nI and 
T , i.li !l.I ‘111 ( I;,?. which means that the air ring has an almost direct feeding system). 
then the main s’tiffncs\ cocticicnl of the ring K!, .- 16. and the damping coefficient (‘, , ,y. 0.0 
i Fly. 7 l’c1: \ 2.7 1. A\ follows from Fig. Il. for ki, I!> and C”,. 0.9 ai \ =:. S. the svstcm 
>houltl undergo the Hopi’ bifurcation. and ;~t \ 14 rhcb rcvcrscd Hopf bifurcation. Figure 
i .~(:I,I <how\ thal the real p;lrt 71, 01 the lowrst L*Igenvaluc indeed becomes positive al \ : 5 
2nd then b;~cl\ ncgatl\c at ‘\ II. 

WC ma\’ climinatc sell’-cucited vibration5 bv changing the radius 01 the orifice (not rhtb 
\,Aunic of tlic chamhcrs, ,I\ in tkimpk ! ) firm I, ! .!I ’ II) ’ iii IO r, 0.15 .X IO t 111. t\ftC‘I’ 
this ch;ln+h. A-,: diminishes from lh to 3. and C‘:, Iron, 0.0 10 0.75 (Fig. 7 for 1’ =. 1 .7). kor 
!lxh value\ 01 h’,, and ( ,,. there arc no unstable regions in Fig. I I. M:c may ohscrvt* 21 
contirmation 01 the elimination 01 rhe llopf hifurcalion in Fig. 12(h): in the whole range of 
11rc rokllional vclocit) \. borh real parts of the cigcnvalues arc negative. 

Figure I? hhows :unplitudcs of vibrations of the +mal (x,.-solid lines) and of the hush 
i z ,,-broken iinex I III the plans in which lhc Cm-cc /.:. xts. 3% t’unctions of the rotational 
vcloc~~\ \. .I\ can Iw \CCII. when r;, I .I) _A I(‘I ’ 111 [iG$. 13(a)]. In the range 7.5 -;- :I c. I2 rhc 
amplit;dc of self-excited vibrations of the journal exceeds the value which is permitted by 
the radial clearance of the bearinp and the value ol‘ the ,journal: bush eccentricity ralio. 
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Fig. 11. Stability map of rotor supported in gas bearings with bushes mounted in springs and dampers: vibrations 
with cylindrical modes = vibrations with conical modes. 
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When rj ~-0.15 X 10 ‘m [Fig. 12(b)]. only the unbalanced vibrations and the small 
resonance of the bush but no self-excited vibrations can be observed. 

Figure 14 shows the dynamic behaviour of the system in the transient period, after the step 
change of the loading force from 7 to 12, at the velocity A = 21 over the unstable region for 
r;, = 1.0 x 10 3 m. As we can see, when r,, = 1.0 X 10 ‘m, the free vibrations forced by the 
step change of the load diminish significantly more slowly than in the case of r, = 
0.15 X 10 ‘m: this is an additional advantage of the use of the air ring with a smaller radius 
of the orifices. 

6. EXAMPLE 111 

In our third example we will consider the stability problem of the system in which the 
parameters of the rotor and the bushes are the same as in Example II. The parameters of the 
bearings arc also the same as in Example II: length I, = 0.11 m, radius R, = 0.055 m, radial 
clearance c, = 30 x 10 ‘m. but this time the bearings arc externally pressurized. As in 
Examples I and II, the rotor is loaded by the weight 2F. ;: 7. 

Figure 1.5 shows the stability map of the system for two selected values of the stiffness 
coefficient K, and various values of the damping coefficient C,,. Here ;I,, is the assumed 
working velocity of the rotor. As can be seen, for K, = 10, the system is unstable at the 
desired working velocity. On the other hand, for K, = 20, the system is stable at ,iw, but it 
cannot reach this velocity due to the unstable region below :I,. We have solved this problem 
by changing the stiffness coefficient K,, from K,, = 20 to K, = 10 at :2 = :I, = 10, and then 
again from K, = 10 to K, = 20 at ,1 = :\> = 25. The damping coefficient C, of the elastic 
support is still equal to 0.5. 

The elastic support of the bearing bushes. which allows us to change the stiffness 
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t isI t M 
Fig. 14. Dynamic behaviour of the rotor after the step change of the loading force, A = 21: (a) r, = 1.0 X lo-” m, 

(b) r, = 0.15 X lo-” m. 

coefficient K,, may be designed as the air ring which is fed by air through one of two orifices 
with the radius rdl = 0.15 X 10P3m, or rd2 = 1.0 X 10P3m. 

Figure 16 shows the real (q) and imaginary (vi) parts of the basic (which may undergo 
Self-eXCitatiOU) eigeUVdUeS Of the System with an air ring. In Fig. 16(a) (rd = rdl), we can see 
that at A = 29, the real part n2 becomes positive, so the steady state of the system is unstable 
at the working condition A,. In Fig. 16(b) (r, = rd2), th e real part 77, is positive in the range 

0 0.1 0.2 0.3 0.4 0.5 0.6 

CP 
Fig. 15. Stability map of rotor supported in gas bearings with bushes mounted in springs and dampers. 
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l-4 \ -: 7.;. which corresponds to the hatched unstable region lor K, = 20 in Fig. 15. If WC 
temporarily change the radius of the orifices from r clz to r,,, at A,. [Fig. 16(c)J. and then again 
from !;,, to r,,? at .\>. MY can keep both 9, and 77’ below zero in the whole range of the 
rcHational velocity I. 

f:ipure 17 shows the values of the main stiffness and damping coefficients of the air ring in 



Hopf bifurcation in rotors supported in gas bearings 513 

0’ ! iI I 1 I 
0 5 lOA15 20 25 3: 

Fig. 17. Stiffness and damping coefficients of the air ring for the system with control. 

the system with control. Changes of rd cause changes in the coefficients. As can be seen, the 
damping coefficients C,, and CZ2 of the air ring may be approximately treated as C, = 05, 
and the stiffness coefficients K,, and Kz2 are approximately equal to K, = 10 for 
r d1 = 0.15 X 10P3m, or K, = 20 for rd2 = 1.0 X 10e3m, as is shown on the stability map in Fig. 
15. 

Figure 18(a) shows the dimensionless amplitudes of the vibrations of the rotor (solid lines) 
and the bushes (broken lines) in the plane in which the force F, acts, as functions of the 
rotational velocity A. The radius of the orifices is rdl. In this case, according to Fig. 15, in 
the wide range A < 28, only small unbalanced vibrations appear. Unfortunately, at A = 28 
the system undergoes the Hopf bifurcation and the self-excited vibrations grow rapidly until 
the working velocity is reached. At A = A, the steady state of the rotor is unstable. Unlike 
this case, for r&, the steady state is stable at A = A, [see Fig. 18(b)], but below this velocity, 
at A = 14, the rotor undergoes the Hopf bifurcation (and the reversed Hopf bifurcation at 
A = 23). The passage through the wide unstable zone 14 < A < 23 is not possible without a 
strongly damaging contact between the journals, bushes and casing. In the system with 
control, with the double chambers in the air ring feeding system, we use the orifices rdl for 
small values of A, then switch the feeding from rdl to rd2 at A, = 10 [‘control on’, see Fig. 
18(c)], before the self-excited vibrations appear, go through the dangerous zone, and finally 
switch again (‘control off’) to rdi at A = 25, reaching safely the working velocity A,. As can 
be seen, in this case only small unbalanced vibrations of the system are observed. There are 
no self-excited vibrations again. 

7. CONCLUSIONS 

We have introduced a method which allows us to control the Hopf bifurcation in 
transients. Our method guarantees elimination of the self-excited vibrations, or a passage 
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Fig. IX. Amplitudes of vibrations of rotor (solid lines) and bushes (broken lines) in the plane m which the force E 
acts. as functions of the rotational vclocitv 2: (:I) r.: .: 0.15 y IO ‘m. (h) r,, 1.0 x 10 ‘m. (c) system with control. 
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through the unstable zone between the Hopf and the reversed Hopf bifurcation points. This 
passage is made possible by a temporary change of one of the system parameters. 

Our method can have significant practical applications as it permits an increase in the 
rotational velocity of rotors in many machines (which is no longer restricted to lower values 
A < A,). In many current engineering systems a small temporary change of one of the system 
parameters can easily be made, and the method can stimulate the idea of ‘non-linear design’, 
i.e. the system can be designed in such a way as to exploit non-linear effects. We hope that 
the examples considered in this paper will stimulate further research on the transient 
behaviour of similar non-linear systems. 
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APPENDIX 

The dimensionless parameters which are used in the main text are related to the bearing parameters and 
connected to their dimensional values (*) by the following formulas: 

C$[N s/m] = v C,,, K$[N/m] = ‘< K,, 
4A’p R2 

m*[kg] = a 
4h2pp,R4 

wzc m, B*[kgm’] =7B 
WC ’ 

w[rad/s] = & 2 A, v*[rad/s] = $ v, r[s] = F z, l*[m] = RI, F* =p&F. 
a 


