Printed in Great Britain. All rights reserved

Chaos, Solitons & Fractals, Vol. 8, No. 4, pp. 499-515, 1997
Pergamon © 1997 Elsevier Science Lid
0960-0779/97 $17.00 +0.00

PII: S0960-0779(96)00110-5

Hopf Bifurcation in Rotors Supported in Gas Bearings
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Abstract—In this paper we describe a problem of control of the Hopf bifurcation. We illustrate the
problem by three examples of a rotor system supported in two gas bearings. The bearing bushes are
connected to the casing by means of additional air rings. In the case when parameters of the air ring
are improperly chosen, at a sufficiently high rotational velocity the rotor undergoes the Hopf
bifurcation and the bearing may be damaged by the growing amplitude of self-excited vibrations. We
may avoid this danger by a proper selection of stiffness and damping coefficients of the air ring or, in
the worst case, by a temporary change of the stiffness or damping coefficients of the air ring. Our
method then guarantees a safe passage through the unstable zone between the Hopf and reversed
Hopf bifurcation points. © 1997 Elsevier Science Ltd

NOMENCLATURE
B inertial moment of rotor Pa atmospheric pressure lN/mz]
B,  inertial moment of joint bushes Po supply pressure [N/m”]
I radial clearance of bearing [m] R,  radius of bearing [m]
c, radial clearance of air ring [m)] R,  radius of air ring [m]
C,  damping coefficients of gas film o1 radius of feedholes of bearing [m]
C,  damping coefficient of elastic support N2 radius of feedholes of air ring [m]
F. static loading of rotor t dimensional time [s]
K,  stiffness coefficients of bearing Xe displacement of journal related to c,
K,  stiffness coefficient of elastic support X, displacement of bush related to ¢,
I half of the distance between bearings A bearing number (dimensionless rotational
I half of the distance between dampers velocity)
I half of the distance between springs m gas viscosity [Ns/my]
L length of bearing and air ring [m] T time
m mass of rotor w dimensional rotational velocity [rad/s]
m,  mass of joint bushes

1. INTRODUCTION

The vast majority of the numerous efforts put into the study of dynamical systems in the past
20 years or so have been devoted to long time behaviour of the solutions and to the
character of the asymptotic attractors of the system. The tools and techniques of the
quantitative description, such as Lyapunov exponents and various invariant measures, have
naturally been driven by the need for characterization of these attractors, and relatively little
attention has been paid to the transient behaviour of trajectories during their progress from
initial conditions to the appropriate attractor. Nevertheless, in a wide range of physical
contexts, properly modelled by dynamical systems, the practical interest lies precisely in this
behaviour; indeed, the asymptotic attractor may not even be closely approached during the
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time interval of interest. In mechanical systems, such as those involving rotating components,
it 1s common for the approach from an initial state to a final, often quite simple, state
described by a fixed equilibrium point or limit cycle, 1o pass through the regions of phase
space which are quite unacceptable for the user. Thus. a rotating shaft may develop large
oscillations and collide with its bearing whilst slowing down to rest. In such situations the
control of (perhaps chaotic) transients is required. A number of methods by which
undesirable chaotic behaviour can be controlled or eliminated have been developed |[1-10].
More speculatively, they indicate ways in which the existence of chaotic behaviour may be
directly beneficial or exploitable. Some of these methods have been successfully applied in
enginecring systems [1. 2. S, 7].

(Chaos controlling methods, like most of the results in the theory of dynamical systems,
have an asymptotic character [11-13]. i.e. under given conditions a dynamical system with
specified parameters behaves in a particular way when ¢r— x. Because many real systems.
like the rotor system mentioned above. are characterized by some values of parameters only
for finite time, these controlling methods cannot always be practically implemented and
there is a need to develop efficient methods for control of transient non-linear effects.

In this paper we investigate the problem of practical control of the Hopf bifurcation. We
consider a particular but representative example of such a situation. For @ = a,., which is a
desired working condition. let the dynamical svstem

- Hlax), (1)

where x €R", « €R™ (nom - 1.2,...) is a vector of system parameters, be characterized by
steady-state behaviour (i.c. x = 0 is a stable fixed point for ¢ = u,). Suppose further that to
reach practically the value a = a, from a = a, (the starting point), a has to go through the
interval {a,a-], and then, for a € [a,.a,]. the steady state v = 0 of the dynamical system (1) is
unstable as the svstem undergoes the Hopf bifurcation at « = a, and reversed Hopf
bifurcation at a = a,. We try to answer the following question: can we safely reach the
desired working condition ¢ = ¢, or do we have to restrict ourselves to the parameter range

3

oy

2. CONTROLLING PROCEDURE

The sitwation described s characteristic for rotor systems where the rotor rotational
veloeity A s a system parameter which has o increase continuously from its starting value
v Gt v = A (desired working conditions). when in the interval [\, A,]. where A, A,
the steady state v O is unstable. A passage through this interval, as exemplified in Fig. 1. is
associated with an increase in the amplitude of rotor vibrations as at A, the self-excited
vibrations originate and are added to small osciilations due to unbalance. At the value A, the
self-cxcited vibrations decrcase. and the amplitude of vibrations stabilizes at the final value.
In the majority of practical systems the interval (A, A,) cannot be passed safely. and the
self-excited oscillations can damage the system at A = A, (Fig. 2) as the acceptable increase
in the vibration amplitude is limited by the design restrictions.

The easiest way to avoid the danger of the system damage is to design it in a way which
completely eliminates the Hopf bifurcation from the system operation in the whole range
(A AL As follows from our numerical investigations concerning rigid rotors supported in
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Fig. 1. Unbalanced and self-excited vibrations of a mechanical system.

gas journal bearings, in some cases it is not possible to design the system in such a way.
Then, the transient behaviour in the dangerous zone has to be controlled so that it may be
passed safely. In this case we propose a simple method which is based on a small temporary
change of one of the other components of the vector a of system parameters, which allows us
to stabilize the fixed point x = 0. When the dangerous zone is passed, the vector a returns to
its initial value. In the controlled system the passage through the dangerous zone is shown in
Fig. 3.

3. OBJECT OF CONSIDERATIONS: ROTOR SUPPORTED IN GAS BEARINGS WITH
ELASTICALLY MOUNTED BUSHES

Let us consider a system (Fig. 4) which consists of a symmetrical rigid rotor supported in
two gas bearings. The combined base of both the bearing bushes is connected to the casing
by means of linear springs K, and viscous dampers C,. The force 2F, is an external static
load acting on the rotor, so F, is the static response of the bearing to the force 2F,. The full
dynamics of the system was considered in Refs [14-18]. Here we describe only one particular
case as the illustration of our method of elimination of self-excited vibrations from the
system operation.

As follows from the references mentioned above, the elastic support K,,, C, of the bearing
bushes makes it possible to avoid self-excited vibrations when values of these coefficients are
properly chosen. The main problem is how to design such an elastic support. Our
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Fig. 2. Unbalanced and self-excited vibrations of a mechanical svstem with limited amplitude of vibrations.
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Fig. 4. Rotor supported in gas bearings with bushes mounted in springs and dampers.
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proposition is to introduce an additional air ring 6 (Fig. 5) round each of the bearing bushes
3. As the bushes do not rotate, these rings must of course be externally pressurized. As
follows from our previous considerations, the chamber feeding system must be employed, in
which the air goes from the compressor through the orifices ry; (or ry,) into chambers 1, and
then through the feedholes ry, into the gap of the air ring. The dependence between the
displacements x,, y, of the bush from the static equilibrium position and the resulting

dynamic increments in the force are given as
FRERGEI
SF,, Cy Cyplly K> Kylly

while in the supporting system from Fig. 4 they are
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Fig. 5. Air ring: a design of an elastic support of a bearing bush (1: chamber, 2: casing, 3: bush, 4: rotor, 5: bearing

gap, 6: air ring).
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As the bush does not rotate. the cross-coupling coefficients ., C,,. Ky». K», are
negligibly small and. as the bush-casing eccentricity ratio is less than 0.25. the main
coefficients €, = ('5; and K, = K.,. We may also assume that (approximately) for the air
ring the following equation is satistied:

{M;,,}_‘_;(‘” 0 H\} (Koo H\}
se o el T kLT

which is similar to eqn (3). This assumption allows us to predict, from calculations
concerning the system with linear springs K, and viscous dampers C,. what values of the
stiffness and damping coefficients of the designed air ring will ensure the steady-state
stability.

The data of the air ring considered are as follows: length L = 0.11 m, radius R, = 0.065 m,
radial clearance ¢, =30x10 "m, air viscosity u = 182x10 "kgm 's '. The feeding
system consists of 16 feedholes. located in two rows at 1/4 and 3/4 of the length of the ring,
supply pressure p, = 0.7 X 10° Pa, radius of the orifices r, = 0.15x 10 *m or 1.0x 10 *m.
radius of the feedholes r; = 1.0 X 10 “m.

Two parameters of the feeding system decide about values of the main stiffness and
damping coefficient of the air ring: the volume of the chambers and the radius of the orifices.
The volume of the chamber V == z'rh, is proportional to the height h, as the radius
r=5.0x10""m is constant. Figure 6 shows the values of (|, and K, as functions of the
frequency of vibrations v for three different values of the chamber height i, = 0.03, 1.0 and
9.0X 10 " m. As can be seen, for small values of A, = 0,03 m, the damping coefficient is
positive but very small and the stiffness coefficient is relatively big (K, = 17). An increase of
the volume of the air chambers at first causes the “air hammer’ phenomenon (C,, <) to
appear for small values of v. Furthermore, the €, values increase and the ‘air hammer' area
shifts below the natural frequency range of the investigated rotor. Concurrently, one can
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Fig, 6. Stiftness and damping coefficients of air ring (r, - 0.13 210 “m).
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Fig. 7. Stiffness and damping coefficients of air ring (#, = 6.0 X 107" m).

observe a significant decrease of the stiffness coefficient value K,;. Figure 7 shows how the
radius of the orifice r4 influences the stiffness and damping coefficients. Enlargement of r,
causes an increase of the K, coefficient. In the region of higher frequencies one cannot
observe any influence of the radius of the orifice on the damping coefficient values. In the
neighbourhood of the ‘air hammer’ region when the r, value decreases, one can observe the
sudden diminishing of C;; and the ‘pneumatic resonance’ phenomenon. It is intelligible
because, when the radius of the orifice increases, the pressure in the chamber is closer and
closer to the supply pressure p,, which means that the chamber feeding system operates in
the same way as the direct action feeding system. One cannot observe the ‘pneumatic
hammer’ phenomenon in the direct feeding systems.

4. EXAMPLE 1

In our first example we consider the rotor whose data are: mass m = 0.42, moment of
inertia B =42, distance between the bearings 2/ =34.6. The parameters of the bushes
(combined by a common base) are: mass m,=0.12, moment of inertia B, =36, distance
between the springs and dampers 2/x = 2/-=2l. The rotor is supported in the externally
pressurized bearings whose data are: length L = 0.11 m, radius R, = 0.055 m, radial clearance
¢;=30X107°m. The feeding system of the bearings consists of 16 feedholes (radius
for = 1.0 X 107* m), located in two rows at 1/4 and 3/4 of the length of the bearing, supply
pressure p, = 0.7 X 10° Pa. The rotor is loaded by its weight 2F, = 7.

Figures 8 and 9 show the stability maps of the system for three selected values of the
stiffness coefficient K, =4, 8 and 16, and for various values of the damping coefficient C,.
Figure 8 shows the regions (hatched) where the self-excited vibration of cylindrical modes
appear, and Fig. 9 presents the regions of the self-excited vibrations of conical modes.

When the bearing bushes are supported in the air rings with ry=0.15X10"°m and
A, =0.03 X 107* m, the stiffness coefficient K,; =~ 16 and the damping coefficient C,, = 0.06
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{see Fig. 6). As we can see from Figs 8 and 9, tor these values of K, and C,, at the rotational
velocity A =35, the self-excited vibrations with cylindrical modes appear. This fact is
confirmed by Fig. 10(a), which shows the real (n,) and imaginary (v,) parts of four basic
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Fig. 9. Stability map of rotor supported in gas bearings with bushes mounted in springs and dampers: vibrations
with conical modes
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Fig. 10. Eigenvalues A, =; +jv;, of rotor with bushes supported in air ring, ry=0.15X 107°m: (a) A=
0.03x107*m, (b) A, =1.0x 1073 m, (c) A, =9.0 X 10™° m.

eigenvalues of the system in which the springs K, and the dampers C,, are replaced by the
described air ring: at A~5 the real part 7., changes from negative to positive, i.e. the
steady state becomes unstable. Additionally, if it were possible to increase A over A =5
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(without damage to the bearings). at A =8, vibrations with conical modes would become
unstable (7,..n;c becomes positive).

When we increase the volume of the chambers (A, =1.0x 10 *m). the basic frec
cylindrical and conical vibrations of the system are in the range 2 < v < 3.5. This means (Fig.
6) that the stiffness coefficient K, = 8 and (which is most important) the damping coefficient
C,, is negative. The system undergoes the ‘pneumatic hammer’ phenomenon and, as can be
seen from Fig. 10(b), the real parts »;.. 7., of vibrations with cylindrical modes are
positive in the whole range of A.

The air ring is designed properly when A, = 9.0 x 10 *m. For this case, the basic free
cylindrical and conical vibrations of the system are in the range 1.7 < v <3, so (see¢ Fig. 6)
the stiffness coefficient K,,~4 and the damping coefficient C,,~0.8. For K,=4 and
(', = 0.8, no unstable regions can be observed in Figs 8 and 9. This fact is confirmed in Fig.
10(c). all the real parts of four basic eigenvalues are negative. We have eliminated
self-excited vibrations from the system operation.

S. EXAMPLE 1

As our second example, we show the stability problem of the rotor whose parameters are
as follows: mass m = 042, moment of mertia B - 126, distance between the bearings
20 340, The parameters of the bushes (combined by a common base) are: mass m, = 0.12,
moment of inertia B, - 36, distance between the springs and dampers 2/ = 2{-= 21, The
parameters of the bearings are: length [ .01 m, radius R, =0.055 m, radial clearance

3040 “m. but this time the bearings are self-acting. As in Example 1. the rotor is
loaded by the weight 27

Figure 11 shows a stability map of the system for two selected values of the stiffness
coefficient K- 5 and 16, and for various values of the damping coefficient .. In this
example. parameters of the rotor have been selected in such 4 way that the system has the
same eigenvalues as evlindnical and conical modes. As we can see from Fig. 11, when the
stiffness coefficient K- 16, a wide unstable region exists for any value of the damping
coctticient €. It we support the bearing bushes in the air rings with A, = 6.0 X 10 'm and
o -1 - 1 “mo o n,s. which means that the air ring has an almost direct feeding system).
then the main stiffness coefficient of the ring K. = 16, and the damping coefficient € = 0.9
(Fig. 7 or v 2700 As follows from Fig. 11 for K, =16 and €, 0.9 at \ =35, the system
should undergo the Hopl bifurcation. and at A 14 the reversed Hopf bifurcation. Figure
I2ta) shows that the real part 7, of the lowest cigenvalue indeed becomes positive at A =S
and then back negative at v 1S,

We mav climinate self-excited vibrations by changing the radius of the oritice (not the
volume of the chambers, as in Example 1) from 70 20 <10 "mtor, 005X 10 “nn After
this change. A, diminishes from 16 to 5. and ¢y, from 0.9 to .73 (Fig. 7 for v = 1.7). For
such values of K, and (.. there are no unstable regions in Fig. 11, We may observe a
confirmation of the elimination ot the Hopf bifurcation in Fig. 12(b): in the whole range of
the rotational veloeity A, both real parts of the eigenvalues are negative.

Figure 13 shows amplitudes of vibrations of the journal (x-solid lincs) and of the bush
fa-broken dines) n the plane in which the force F£. acts. as functions of the rotational
velocity Ao As can be seen, when g - 1O~ 10 m [Fig. 13(a)]. in the range 7.5 < A = 12 the
amplitude of self-excited vibrations of the journal exceeds the value which is permitted by
the radial clearance of the bearing and the value of the journal: bush eccentricity ratio.
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Fig. 11. Stability map of rotor supported in gas bearings with bushes mounted in springs and dampers: vibrations
with cylindrical modes = vibrations with conical modes.
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When r,~0.15x10 ‘m [Fig. 12(b)]. only the unbalanced vibrations and the smalil
resonance of the bush but no self-excited vibrations can be observed.

Figure 14 shows the dynamic behaviour of the system in the transient period, after the step
change of the loading force from 7 to 12, at the velocity A = 21 over the unstable region for
ra=1.0x10""m. As we can see, when r,= 1.0 X 10 *m, the free vibrations forced by the
step change of thc load diminish significantly more slowly than in the case of ry=
0.15x 10 “m; this is an additional advantage of the use of the air ring with a smaller radius
of the orifices.

6. EXAMPLE 11

In our third example we will consider the stability problem of the system in which the
parameters of the rotor and the bushes are the same as in Example IL. The parameters of the
bearings are also the same as in Example II: length L = 0.11 m, radius R, = 0.055 m, radial
clearance ¢, =30 X 10 “m, but this time the bearings are externally pressurized. As in
Examples | and II, the rotor is loaded by the weight 2F, = 7.

Figure |5 shows the stability map of the system for two selected values of the stiffness
coefficient K, and various values of the damping coefficient C,,. Here A, is the assumed
working velocity of the rotor. As can be seen, for K, = 10, the system is unstable at the
desired working velocity. On the other hand, for K, = 20, the system is stable at A,, but it
cannot reach this velocity due to the unstable region below A,. We have solved this problem
by changing the stiffness coefficient K, from K, =20 to K, =10 at A = A, =10, and then
again from K, =10 to K, =20 at A=A\, =25. The damping coefficient C, of the elastic
support is still equal to 0.5.

The elastic support of the bearing bushes. which allows us to change the stiffness
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Fig. 13. Amplitudes of unbalanced and self-excited vibrations of rotor (solid lines) and bush (broken lines) in the
planc n which the force £ acts. as functions of the rotational velocity A: (a) r,= 10X 10 "m. (h)
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Fig. 14. Dynamic behaviour of the rotor after the step change of the loading force, A =21: (a) ry=1.0X 107> m,
(b) r;=0.15x10"m.

coefficient K, may be designed as the air ring which is fed by air through one of two orifices
with the radius ry; = 0.15 X 107°m, or 75, = 1.0 X 10 °m.

Figure 16 shows the real (%;) and imaginary (v;) parts of the basic (which may undergo
self-excitation) eigenvalues of the system with an air ring. In Fig. 16(a) (r4 = r4;), we can see
that at A =29, the real part 7, becomes positive, so the steady state of the system is unstable
at the working condition A,,. In Fig. 16(b) (r;=ry,), the real part 7, is positive in the range

unstable
/777 regions
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Fig. 15. Stability map of rotor supported in gas bearings with bushes mounted in springs and dampers.
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{4 A <223, which corresponds to the hatched unstable region for K =20 in Fig. 15. If we
temporarily change the radius of the orifices from ry, to ryy at A, [Fig. 16(c)}. and then again
from ry, to ry at A, we can keep both 7, and 7. below zero in the whole range of the
rotational velocity \.

Figure 17 shows the values of the main stiffness and damping coefficients of the air ring in
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Fig. 17. Stiffness and damping coefficients of the air ring for the system with control.

the system with control. Changes of r, cause changes in the coefficients. As can be seen, the
damping coefficients C;; and C,, of the air ring may be approximately treated as C,~ 0.5,
and the stiffness coefficients K;, and K,, are approximately equal to K ,~10 for
rar = 0.15 10 m, or K, =20 for rs, = 1.0 X 10™°m, as is shown on the stability map in Fig.
15.

Figure 18(a) shows the dimensionless amplitudes of the vibrations of the rotor (solid lines)
and the bushes (broken lines) in the plane in which the force F, acts, as functions of the
rotational velocity A. The radius of the orifices is 74. In this case, according to Fig. 15, in
the wide range A <28, only small unbalanced vibrations appear. Unfortunately, at A =28
the system undergoes the Hopf bifurcation and the self-excited vibrations grow rapidly until
the working velocity is reached. At A = A,, the steady state of the rotor is unstable. Unlike
this case, for ry,, the steady state is stable at A = A, [see Fig. 18(b)], but below this velocity,
at A =~ 14, the rotor undergoes the Hopf bifurcation (and the reversed Hopf bifurcation at
A =23). The passage through the wide unstable zone 14 < A <23 is not possible without a
strongly damaging contact between the journals, bushes and casing. In the system with
control, with the double chambers in the air ring feeding system, we use the orifices ry, for
small values of A, then switch the feeding from 7y to 7y at A; =10 [‘control on’, see Fig.
18(c)], before the self-excited vibrations appear, go through the dangerous zone, and finally
switch again (‘control off’) to 74, at A =25, reaching safely the working velocity A,,. As can
be seen, in this case only small unbalanced vibrations of the system are observed. There are
no self-excited vibrations again.

7. CONCLUSIONS

We have introduced a method which allows us to control the Hopf bifurcation in
transients. Our method guarantees elimination of the self-excited vibrations, or a passage
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Fig. 18. Amplitudes of vibrations of rotor (solid lines) and bushes (broken lines) in the plane in which the force F.
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through the unstable zone between the Hopf and the reversed Hopf bifurcation points. This
passage is made possible by a temporary change of one of the system parameters.

Our method can have significant practical applications as it permits an increase in the
rotational velocity of rotors in many machines (which is no longer restricted to lower values
A < A;). In many current engineering systems a small temporary change of one of the system
parameters can easily be made, and the method can stimulate the idea of ‘non-linear design’,
i.e. the system can be designed in such a way as to exploit non-linear effects. We hope that
the examples considered in this paper will stimulate further research on the transient
behaviour of similar non-linear systems.
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APPENDIX

The dimensionless parameters which are used in the main text are related to the bearing parameters and
connected to their dimensional values (*) by the following formulas:

2Ap,R? R?

a 4A’p,R? 4A%p,R*
CiNs/m] = =22, K#¥N/m] =2 =Ky, m*[kg]=+zcm, B[k m2]=w+8,

i

2 2A
w[rad/s] :é’;l“?z A, v¥[rad/s] = %v, ifs]=="1. *[m]=RI, F* = IRZ F.

a



