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In the work we investigate the bifurcational mechanism of the loss of stability of the synchronous
chaotic regime in coupled identical systems. We show that loss of synchronization is a result of the
sequence of soft bifurcations of saddle periodic orbits which induce the bubbling and riddling transitions
in the system. A bifurcation of a saddle periodic orbit embedded in the chaotic attractor determines the
bubbling transition. The phenomenon of riddled basins occurs through a bifurcation of a periodic orbit
located outside the symmetric subspace. [S0031-9007(97)03692-2]

PACS numbers: 05.45.+b

Interactive chaotic systems are known to demonstrate Let us consider the system of two coupled logistic maps
the chaotic synchronization phenomenon [1-7]. In then the form
case of identical systems a synchronous regime corre-
sponds to a chaotic attractor that locates in the symmetric 5 5 ) Q)
subspaca; = x, of the whole phase space of the system. Yur1 = A =y, + ely, — x,),

When the system exits from the synchronization regionwherex,, y, are dynamical variables, is the controlling
the chaotic attractor loses its stability in the normal to theparameter of the single map, ardis the coefficient of
subspace direction according to the determined scenarimupling.

[8—11]. In this case bubbling and riddling transitions can With the increase of the parametgrthe system (1) is

be observed as intermediate stages. After bubbling trarknown to demonstrate the cascade of period-doubling bi-
sition the intermittent transient process can take place ifurcations of symmetricx(, = y,) periodic orbits2" C°

the system. There are orbits repelled from the chaotic ai?v = 0, 1,2,...) in the wide region of the coupling coeffi-
tractor and returned to the vicinity of the symmetric sub-cient values [20]. The cascade of the bifurcations leads to
space. In this situation the noise of small intensity inducegreation of a chaotic attractor located in the symmetric sub-
the so-called bubbling attractor [8]. After riddling transi- space. With further increase of the paramet¢ne band-
tion in the basin of the symmetric chaotic attractor (includ-merging bifurcations of the chaotic attract@¥A° take

ing small neighborhood of an attractor) there appears a splace, and windows of stable periodic orbits of different
of “holes” which belongs to the basin of other attractorperiods exist. If we decrease the coupling coefficient, the

Xpt] = A — x,2z + s(x,% — y,zz),

[12-14]. synchronous chaotic oscillations are changed by nonsyn-
These phenomena take place in different systems anthronous regimes [20—22]. Near the bifurcational point
are intensively investigated for the last time [8—19]. the intermittency of Yamada-Fujisaka takes place [23,24].

The loss of stability of the chaotic state in the normalln the system (1) there are regions of the parameters’ values
direction is immediately connected with bifurcations of where the multistability phenomenon is observed [21,25].
saddle periodic orbits embedded in the symmetric chaoti€ormation of multistability occurs due to bifurcations of
attractor. For instance, in the work [17] it was demon-periodic orbits which take place when the parameters are
strated that riddling transition in a symmetric system ap-changing. Every orbit can undergo several bifurcations.
pears as a result of saddle-repeller subcritical bifurcatiofThis leads to multiplication of families of the periodic or-
(the eigenvaluet1) of the saddle fixed point embedded bits [26], many of which can coexist in the stable state
in the chaotic attractor. under the certain parameters’ values.

In this work we investigate the mechanism of the stabil- Let us consider the mechanism of destruction of syn-
ity loss of the chaotic in-phase regime in the coupled logisehronous chaotic motions in the coupled logistic maps
tic maps. We demonstrate that the loss of synchronizatiofrom the point of view of bifurcations of the saddle pe-
is a result of a sequence of soft bifurcations of the certaimiodic orbits embedded in the chaotic attractor.
family of saddle periodic orbits. These bifurcations induce In the system (1) ah = 1.56 in the interval of values
bubbling and riddling transitions in the system. A bifur- & from 0.2043 to 0.7957 a one-band symmetria{ = y,)
cation of a saddle periodic orbit embedded in the chaotichaotic attracton’ is observed. Itis formed as a result of
attractor determines the bubbling transition. The phea cascade of the period-doubling bifurcations of the sym-
nomenon of riddled basins occurs through a bifurcation ometric periodic orbit@" C°. In the mentioned interval of
a periodic orbit located outside the symmetric subspace. the parameters values these orbits are saddle ones. They
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are embedded in the attracté? and determine its struc- 2.0 ; .
ture. When exiting from the region of synchronization (a)
saddle orbits of the familg" C° lose their stability in the I
normal direction. With the decrease of the coupling co- O
efficient the orbitsC?, 2¢C°, 4¢°, 8C?, and16C°, which x R
are not changing their coordinates undergo bifurcations at 1.0 T
valuese = 0.2043, 0.1659, 0.1614, 0.1628, and 0.1622, y ©
respectively.

The loss of stability of the chaotic synchronization
regime begins with a bifurcation of the fixed poi@t. At
e = 0.2043 its minimal eigenvalue becomes equakta.
There is the period-doubling bifurcation. As a resgft
transforms to a repeller and in its neighborhood outside the -
symmetric subspace a saddle orbit of double pefied s
softly appears [Fig. 1(a)]. Itis symmetric to the transfor- 40 . , . , A
mation of coordinatesx,,y,) < (y,,x,). With the de- 1.0 0.0 1.0 2.0
crease of the coupling the points of the orbit continuously X
move away from the symmetric subspace. Now, in the
small neighborhood of® there are initial conditions start- 2.0 ' '
ing from which trajectories leave the neighborhood of the (b)
symmetric subspace to the saddle ofiit. In the neigh-
borhood of every preimage of the poi@f there are also . X ov
regions of initial conditions of normal unstability. The + v ©
saddle orbiC! and its unstable manifolds bound the re- 10k v _
gion near the symmetric subspace which the trajectories e}
cannot leave. The phase point returns to the neighborhood
of the symmetric chaotic set along the unstable manifolds
and is attracted to it. The period-doubling bifurcation of ¥ R
the saddle poin€? induces the bubbling transition in the v .
system. After it, transient processes that have character %° [ X i
of intermittency can be observed in the considered system.
They are finished by the synchronous chaotic oscillations. o
The noise of small intensity induces bubbling attractor. R <&

At lower parameter values there are period-doubling bi- v
furcations of orbits of higher periodx?, 4C?, 8C?, and 10 s - .
16C° embedded in the chaotic attractor. Their minimal 10 0.0 10 20
eigenvalues become equaltd. As a result they become X

repeller and saddle orbits of double periods softly appears g 1. (@) The repellec® (O), the saddle2C? (), 4C°
ing in its neighborhoods. Then points of the saddle orbit§A) embedded in the chaotic saf and the saddl@C! (x)
move away from the symmetric subspace. Its neighborthe bifurcation of which induces the bubbling transitioh =

hood becomes more riddled by holes in which phase point-56,& = 0.17). (b) The repeller<® (O), 2¢° (0O), 4C° (A)

; ; and the saddlestC? (¢), 8C* (V) appeared in the result
repels from it. The bubbling attractor becomes more deof bifurcations of 2C° and 4C°, respectively. The saddles

veloped. However, without fluctuations symmetric chaoticy " (x) and2cs (+) the birth bifurcation of which transforms
oscillations remain in the system after transient processex"! to the stable nodé.) and induces the riddling transition
uptoe = 0.154. (A = 1.56,& = 0.143).

We must underline that we have investigated bifurca-
tions of orbits up to the period 16. But there are reasons
to suppose thaV C? family orbits of higher periods un- orbits of the same perid®C{ and2C5 softly appears in its
dergo the bifurcations in the considered region of the paneighborhood. They are symmetric to each other accord-
rameter values. ing to transformation of coordinatds,,y,) < (v, x,).

The process of further stability loss of the synchronousAt reverse parameter changing this bifurcation corresponds
chaotic stated’ is determined by bifurcations of saddle to the subcritical pitchfork bifurcation. The bifurcation of
periodic orbits located outside the symmetric subspace biibe saddle orbi2C' which has appeared from the embed-
appeared as a result of bifurcations of periodic orbits emeed into the chaotic attractor fixed poiaf induces the
bedded in the symmetric chaotic 88t Ate = 0.1533the  riddling transition in the system (1). In Fig. 2 there are
maximal eigenvalue of the saddle orb&' enters the unit basins of the symmetric chaotic s&t (white) and of the
circle through+1. It becomes stable and a pair of saddlestable periodic orbi2C' (black). From the figure one can
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FIG. 2. Basins of attracting of the chaotic s4f (white)
and of the stable periodic orb®C! (black) obtained at = .
1.56,& = 0.143 in the region—1 <y <15, -1 =x = 1.5 zcs\\ 1 x A;
with step 0.005 and the maximal number of iteratians- 10°. ° . . c)
The repellerC?, the stable nodeC', and the saddleaC;, 2C> \T/
are marked by ‘©)", “(@)", “ X", and “+", respectively. A° !
CO
see that the basin of the chaotic g4étbecomes riddled by 2, /\ 2¢;
holes that relate to the basin of the attracar'. As a * 2! ¢
result of bifurcation of the saddle orlliC' in the phase / \

space of the system there appears a region which narrows o , , )
to the symmetric subspace and leans on the repéfler FIG. 3. Consecutive bifurcations that induce the bubbling (a),
. . . . . (b) and the riddling (b), (c) transitions.
In this region phase trajectories leave the chaotic attrac-
tor and are attracted C'. Near every preimage of the
fixed pointC? there are also such regions. This leads taregimes practically from any initial conditions. The set
riddling of the basin of the chaotic séf. The case of A° transforms to a chaotic saddle.
creation of the regions of capture of phase trajectories by In the other considered region of the values of the cou-
another attractor is similar to that described in the workpling coefficient, wherz is more than 0.7957 we observed
[17]. However, in our case we have another bifurcationah similar scenario of the loss of stability af. However,
mechanism. there are differences in bifurcations of some saddle or-
In the system (1) the riddling transition is determinedbits, but they also lead to bubbling and riddling transitions.
by two consecutive bifurcations that are schematically deAt £ = 0.7957 the saddle poinC® undergoes the super-
scribed in Fig. 3. The embedded in the chaotic attraceritical pitchfork bifurcation but not the period-doubling
tor saddle fixed poinC® undergoes the period-doubling bifurcation. Its minimal eigenvalue becomes equattn
bifurcation [Fig. 3(a)]. In its neighborhood the saddle or-The saddleC® transforms to repeller. In its neighbor-
bit 2C! appears [Fig. 3(b)]. ThelC' undergoes a bi- hood outside the symmetric subspace a pair of saddle fixed
furcation in the result of which a pair of the saddle orbitspointsC' andC? appear. This bifurcation induces the bub-
(2C1,2C3) appears in its neighborhood add! becomes bling transition in the system. A¢ = 0.8467 the maxi-
stable [Fig. 3(c)]. In this case the “tongue” of capture ofmal eigenvalues of the saddle poit$ and C? enter the
phase trajectories b¥C' is formed. Its bounds are the unit circle through—1. They become stable and in their
stable manifolds of the saddle orb2€7 and2C5. Inthe neighborhoods saddle orbits of the double period appear.
moment of the bifurcation the tongue is infinitely narrow. At reverse parameter changing this case corresponds to the
With moving away from the bifurcational valuaC;} and  subcritical bifurcation of period doubling. The bifurca-
2C; diverge and the tongue continuously expands. tions of the saddle point€' and C? induce the riddling
At & = 0.1274 and 0.1238 the saddle orbit8C* and transition in the system (1). Saddle orlis®, 4C°, 8C°,
4C? undergo the same bifurcations. This leads to furtheand 16C° undergo the same bifurcations as in the region
riddling of the basin ofA?. In its neighborhood there of small coupling.
appears an additional set of points that belong to the basin In this work we carried out investigations of stability
of 4C2. loss mechanism of synchronous chaotic state in the cou-
With further decrease of the coupling coefficient phasepled logistic maps from the point of view of bifurcations
trajectories depart to attractors relating to nonsynchronousf saddle periodic orbits. We showed that the exit from
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