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In the work we investigate the bifurcational mechanism of the loss of stability of the synchron
chaotic regime in coupled identical systems. We show that loss of synchronization is a result o
sequence of soft bifurcations of saddle periodic orbits which induce the bubbling and riddling transi
in the system. A bifurcation of a saddle periodic orbit embedded in the chaotic attractor determine
bubbling transition. The phenomenon of riddled basins occurs through a bifurcation of a periodic
located outside the symmetric subspace. [S0031-9007(97)03692-2]
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Interactive chaotic systems are known to demonstr
the chaotic synchronization phenomenon [1–7]. In t
case of identical systems a synchronous regime co
sponds to a chaotic attractor that locates in the symme
subspacex1 ­ x2 of the whole phase space of the system
When the system exits from the synchronization regio
the chaotic attractor loses its stability in the normal to t
subspace direction according to the determined scen
[8–11]. In this case bubbling and riddling transitions ca
be observed as intermediate stages. After bubbling tr
sition the intermittent transient process can take place
the system. There are orbits repelled from the chaotic
tractor and returned to the vicinity of the symmetric su
space. In this situation the noise of small intensity induc
the so-called bubbling attractor [8]. After riddling trans
tion in the basin of the symmetric chaotic attractor (inclu
ing small neighborhood of an attractor) there appears a
of “holes” which belongs to the basin of other attracto
[12–14].

These phenomena take place in different systems
are intensively investigated for the last time [8–19].

The loss of stability of the chaotic state in the norm
direction is immediately connected with bifurcations o
saddle periodic orbits embedded in the symmetric chao
attractor. For instance, in the work [17] it was demo
strated that riddling transition in a symmetric system a
pears as a result of saddle-repeller subcritical bifurcat
(the eigenvalue11) of the saddle fixed point embedde
in the chaotic attractor.

In this work we investigate the mechanism of the stab
ity loss of the chaotic in-phase regime in the coupled log
tic maps. We demonstrate that the loss of synchronizat
is a result of a sequence of soft bifurcations of the certa
family of saddle periodic orbits. These bifurcations induc
bubbling and riddling transitions in the system. A bifur
cation of a saddle periodic orbit embedded in the chao
attractor determines the bubbling transition. The ph
nomenon of riddled basins occurs through a bifurcation
a periodic orbit located outside the symmetric subspace
0031-9007y97y79(6)y1014(4)$10.00
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Let us consider the system of two coupled logistic map
in the form

xn11 ­ l 2 x2
n 1 ´sx2

n 2 y2
nd ,

yn11 ­ l 2 y2
n 1 ´s y2

n 2 x2
nd ,

(1)

wherexn, yn are dynamical variables,l is the controlling
parameter of the single map, and´ is the coefficient of
coupling.

With the increase of the parameterl the system (1) is
known to demonstrate the cascade of period-doubling b
furcations of symmetric (xn ­ yn) periodic orbits2N C0

sN ­ 0, 1, 2, . . .d in the wide region of the coupling coeffi-
cient values [20]. The cascade of the bifurcations leads
creation of a chaotic attractor located in the symmetric su
space. With further increase of the parameterl the band-
merging bifurcations of the chaotic attractors2NA0 take
place, and windows of stable periodic orbits of differen
periods exist. If we decrease the coupling coefficient, th
synchronous chaotic oscillations are changed by nonsy
chronous regimes [20–22]. Near the bifurcational poin
the intermittency of Yamada-Fujisaka takes place [23,24
In the system (1) there are regions of the parameters’ valu
where the multistability phenomenon is observed [21,25
Formation of multistability occurs due to bifurcations o
periodic orbits which take place when the parameters a
changing. Every orbit can undergo several bifurcation
This leads to multiplication of families of the periodic or-
bits [26], many of which can coexist in the stable stat
under the certain parameters’ values.

Let us consider the mechanism of destruction of sy
chronous chaotic motions in the coupled logistic map
from the point of view of bifurcations of the saddle pe
riodic orbits embedded in the chaotic attractor.

In the system (1) atl ­ 1.56 in the interval of values
´ from 0.2043 to 0.7957 a one-band symmetric (xn ­ yn)
chaotic attractorA0 is observed. It is formed as a result o
a cascade of the period-doubling bifurcations of the sym
metric periodic orbits2N C0. In the mentioned interval of
the parameters values these orbits are saddle ones. T
© 1997 The American Physical Society
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are embedded in the attractorA0 and determine its struc-
ture. When exiting from the region of synchronizatio
saddle orbits of the family2N C0 lose their stability in the
normal direction. With the decrease of the coupling c
efficient the orbitsC0, 2C0, 4C0, 8C0, and16C0, which
are not changing their coordinates undergo bifurcations
values´ ­ 0.2043, 0.1659, 0.1614, 0.1628, and 0.1622,
respectively.

The loss of stability of the chaotic synchronizatio
regime begins with a bifurcation of the fixed pointC0. At
´ ­ 0.2043 its minimal eigenvalue becomes equal to21.
There is the period-doubling bifurcation. As a resultC0

transforms to a repeller and in its neighborhood outside t
symmetric subspace a saddle orbit of double period2C1

softly appears [Fig. 1(a)]. It is symmetric to the transfo
mation of coordinatessxn, ynd $ s yn, xnd. With the de-
crease of the coupling the points of the orbit continuous
move away from the symmetric subspace. Now, in th
small neighborhood ofC0 there are initial conditions start-
ing from which trajectories leave the neighborhood of th
symmetric subspace to the saddle orbit2C1. In the neigh-
borhood of every preimage of the pointC0 there are also
regions of initial conditions of normal unstability. The
saddle orbit2C1 and its unstable manifolds bound the re
gion near the symmetric subspace which the trajector
cannot leave. The phase point returns to the neighborho
of the symmetric chaotic set along the unstable manifol
and is attracted to it. The period-doubling bifurcation o
the saddle pointC0 induces the bubbling transition in the
system. After it, transient processes that have charac
of intermittency can be observed in the considered syste
They are finished by the synchronous chaotic oscillation
The noise of small intensity induces bubbling attractor.

At lower parameter values there are period-doubling b
furcations of orbits of higher periods2C0, 4C0, 8C0, and
16C0 embedded in the chaotic attractor. Their minim
eigenvalues become equal to21. As a result they become
repeller and saddle orbits of double periods softly appe
ing in its neighborhoods. Then points of the saddle orb
move away from the symmetric subspace. Its neighb
hood becomes more riddled by holes in which phase po
repels from it. The bubbling attractor becomes more d
veloped. However, without fluctuations symmetric chaot
oscillations remain in the system after transient proces
up to´ ø 0.154.

We must underline that we have investigated bifurc
tions of orbits up to the period 16. But there are reaso
to suppose that2N C0 family orbits of higher periods un-
dergo the bifurcations in the considered region of the p
rameter values.

The process of further stability loss of the synchrono
chaotic stateA0 is determined by bifurcations of saddle
periodic orbits located outside the symmetric subspace
appeared as a result of bifurcations of periodic orbits e
bedded in the symmetric chaotic setA0. At ´ ­ 0.1533 the
maximal eigenvalue of the saddle orbit2C1 enters the unit
circle through11. It becomes stable and a pair of sadd
n
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FIG. 1. (a) The repellerC0 ssd, the saddles2C0 shd, 4C0

snd embedded in the chaotic setA0 and the saddle2C1 s3d
the bifurcation of which induces the bubbling transitionsl ­
1.56, ´ ­ 0.17d. (b) The repellersC0 ssd, 2C0 shd, 4C0 snd
and the saddles4C2 sed, 8C4 s,d appeared in the result
of bifurcations of 2C0 and 4C0, respectively. The saddles
2Cs

1 s3d and2Cs
2 s1d the birth bifurcation of which transforms

2C1 to the stable nodesdd and induces the riddling transition
sl ­ 1.56, ´ ­ 0.143d.

orbits of the same period2Cs
1 and2Cs

2 softly appears in its
neighborhood. They are symmetric to each other acco
ing to transformation of coordinatessxn, ynd $ s yn, xnd.
At reverse parameter changing this bifurcation correspon
to the subcritical pitchfork bifurcation. The bifurcation o
the saddle orbit2C1 which has appeared from the embed
ded into the chaotic attractor fixed pointC0 induces the
riddling transition in the system (1). In Fig. 2 there ar
basins of the symmetric chaotic setA0 (white) and of the
stable periodic orbit2C1 (black). From the figure one can
1015
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FIG. 2. Basins of attracting of the chaotic setA0 (white)
and of the stable periodic orbit2C1 (black) obtained atl ­
1.56, ´ ­ 0.143 in the region21 # y # 1.5; 21 # x # 1.5
with step 0.005 and the maximal number of iterationsn ­ 106.
The repellerC0, the stable node2C1, and the saddles2Cs

1, 2Cs
2

are marked by “(s)”, “( d)”, “ 3”, and “1”, respectively.

see that the basin of the chaotic setA0 becomes riddled by
holes that relate to the basin of the attractor2C1. As a
result of bifurcation of the saddle orbit2C1 in the phase
space of the system there appears a region which narro
to the symmetric subspace and leans on the repellerC0.
In this region phase trajectories leave the chaotic attra
tor and are attracted to2C1. Near every preimage of the
fixed pointC0 there are also such regions. This leads
riddling of the basin of the chaotic setA0. The case of
creation of the regions of capture of phase trajectories
another attractor is similar to that described in the wo
[17]. However, in our case we have another bifurcation
mechanism.

In the system (1) the riddling transition is determine
by two consecutive bifurcations that are schematically d
scribed in Fig. 3. The embedded in the chaotic attra
tor saddle fixed pointC0 undergoes the period-doubling
bifurcation [Fig. 3(a)]. In its neighborhood the saddle o
bit 2C1 appears [Fig. 3(b)]. Then2C1 undergoes a bi-
furcation in the result of which a pair of the saddle orbi
(2Cs

1, 2Cs
2) appears in its neighborhood and2C1 becomes

stable [Fig. 3(c)]. In this case the “tongue” of capture o
phase trajectories by2C1 is formed. Its bounds are the
stable manifolds of the saddle orbits2Cs

1 and2Cs
2. In the

moment of the bifurcation the tongue is infinitely narrow
With moving away from the bifurcational value2Cs

1 and
2Cs

2 diverge and the tongue continuously expands.
At ´ ­ 0.1274 and 0.1238 the saddle orbits8C4 and

4C2 undergo the same bifurcations. This leads to furth
riddling of the basin ofA0. In its neighborhood there
appears an additional set of points that belong to the ba
of 4C2.

With further decrease of the coupling coefficient pha
trajectories depart to attractors relating to nonsynchrono
1016
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FIG. 3. Consecutive bifurcations that induce the bubbling (a
(b) and the riddling (b), (c) transitions.

regimes practically from any initial conditions. The se
A0 transforms to a chaotic saddle.

In the other considered region of the values of the co
pling coefficient, wheń is more than 0.7957 we observed
a similar scenario of the loss of stability ofA0. However,
there are differences in bifurcations of some saddle o
bits, but they also lead to bubbling and riddling transition
At ´ ­ 0.7957 the saddle pointC0 undergoes the super-
critical pitchfork bifurcation but not the period-doubling
bifurcation. Its minimal eigenvalue becomes equal to11.
The saddleC0 transforms to repeller. In its neighbor-
hood outside the symmetric subspace a pair of saddle fix
pointsC1 andC2 appear. This bifurcation induces the bub
bling transition in the system. At́ ­ 0.8467 the maxi-
mal eigenvalues of the saddle pointsC1 andC2 enter the
unit circle through21. They become stable and in their
neighborhoods saddle orbits of the double period appe
At reverse parameter changing this case corresponds to
subcritical bifurcation of period doubling. The bifurca-
tions of the saddle pointsC1 and C2 induce the riddling
transition in the system (1). Saddle orbits2C0, 4C0, 8C0,
and16C0 undergo the same bifurcations as in the regio
of small coupling.

In this work we carried out investigations of stability
loss mechanism of synchronous chaotic state in the co
pled logistic maps from the point of view of bifurcations
of saddle periodic orbits. We showed that the exit from
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the region of synchronization is followed by the sequen
of soft bifurcations of the family of saddle orbits2N C0

which form the structure of the attractor. The loss of st
bility of the symmetric chaotic set in the normal directio
begins with bifurcation of the saddle pointC0 that induces
the bubbling transition in the system. The saddle pe
odic orbit and its unstable manifolds which appeared fro
C0 bound the region near the symmetric subspace, fr
which a trajectory cannot leave from. Soft bifurcation o
this fixed point located outside the symmetric subspace
duces the riddling transition in the system. Bifurcations
saddle orbits of higher periods intensify the bubbling a
riddling effects. The basin of the symmetric attractor ca
be riddled by holes a part of which belongs to the basin
one regular attractor and a part belongs to the basin of
other one. With further change of the control parame
value away from the region of synchronization the chao
attractor continuously “loses” its basin and transforms
chaotic saddle. We suppose that the bifurcational scena
described in the work is rather common for identical co
pled systems with period doubling.
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