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Abstract 

We show that the synchronization of coupled chaotic oscillators can be achieved by means of periodic parametric per- 
turbations of the coupling element. The possibility of synchronization is demonstrated for the simple case of two identical 
nonautonomous oscillators with piecewise linear characteristics both analytically and numerically. Using linear ~malysis we 
have determined the stability conditions Ibr symmetric oscillations. 

PACS." 05.45.+b 

Recently, the problem of synchoronization and controlling chaos in different dynamical systems has attracted 
great interest. It has been established that two interacting nonlinear systems can demonstrate the phenomenon of 
synchronization of chaos lbr some coupling ]1-7]. The synchronous regime of chaotic dynamical systems can 
be achieved also through a controlling chaos procedure based on different methods [8-14]. In this work we have 
studied the possibility of synchronization of coupled identical chaotic oscillators by means of the periodic parameter 
perturbations of the coupling element. 

The application of periodic parametric perturbations for modification of the chaotic dynamics has been considered 
in I 15-20.1, where it has been shown both theoretically and experimentally that reasonant parametric perturbations 
can suppress chaotic behaviour. 

The idea of using the parametric perturbations for synchronization of coupled chaotic oscillators is based on a 
familar classical problem of the pendulum with oscillated suspension (the suspension point of the pendulum moves 
harmonically) [21,22]. Beginning from the defined values of amplitude and frequency the parametric perturbation 
change the unstable equilibrium state into the stable one. 

In this work, for the simple exanaple of two coupled identical nonautonomous chaotic oscillators we show the 
stabilization effect of symmetrical motions (that correspond to synchronization of chaos) by means of the periodic 
pararnetric perturbations of the coupling element. The stability condition of symmetrical synchronized oscillations 
is found and the region of the synchronization of chaos in the parameter space (the amplitude and the frequency of 
parametric perturbations) is located. The numerical results have shown good agreement with theoretical ones. 
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Let us consider two coupled identical oscillators in the form 

21.2 + ot21.2 + ,/'(x1.2) - y(x2,1 - xl,2) = B sin(a~t), (1) 

Where 

f ( x )  = ( b -  1)x 4 - 0 . 5 ( b - a ) ( l x -  l i -  ix + IlL (2) 

o~ is the dissipation parameter, y the coefficient of  coupling, and B and co are the amplitude and the frequency of  

the external force, respectively. 
In case y = 0 ,  E q s ,  (1 )  are uncoupled and when the external force is equal to zero (B ---- 0), Eqs. (1) describe the 

nonlinear damping oscilhttor with three equilibrium points: 

& :  (xl = O, yi = 0 ) ,  

P2: (x2 = ( b -  a ) / ( b -  1), Y2 = 0), 

P3: (x3 = - ( b  - a ) / ( b  - 1), Y3 = 0). 

If  

i 2 0 < a <  1, b >  ( l + ~ a ) ,  o r > 0 ,  

the point P] is the saddle one and P2,3 are the stable focus points. The external force at which the nonlinear oscillator 

shows the chaotic behaviour in the region of  the parameter values has been estimated. The coupled oscillators (y > 
0) show different forms of  the regular and chaotic behaviour including tile regime of the nonsynchmn0us chaotic 

oscillations. 

In the system (1) the synchronization of  chaotic oscillators can be achieved by means of periodic parametric 

perturbations of  the coupling coefficient. Suppose that the coupling coeflicient y is varied periodically in time about 

the constant level Y0, i.e., 

Y = Yo + F ( t ) ,  (3) 

where F ( t )  is the periodic function with the period T = 2 ~ / 1 2 ( ~  is the frequency of  parametric perturbations). 

In order to demonstrate the mechanism ot" the stabilization of  the symrnetric oscillations more simply, we will take 

the parametric perturbation in the form 

F ( t )  = ea'22 sgn(sin(g2t)). (4) 

Taking into account (3) and (4), we can rewrite the equation of  the coupled oscillators (1) as 

3cl.2 = )'1.2, (5) 
5't.2 = - o e y i . 2  - . f ( x ] . 2 )  + (g0 + ~ S22 sgn(sin(g2t))(x2,1 - xl,2) + B sin0ot). 

With the variable transformations 

I I 
U = /(X[ --Y2) , l/I = l ( x  1 -~-X2), t,' ~(Yl --Y2), 1)1 = ~(.}"1 -I-)'2), 

we cm] get from the system (5) equations which describe dynamics of  the coupled oscillators in a small vicinity of  
a symmetric subspace of  the complete phase space 

t't, = v, (6) 

t'~ = - -o t  v - -  COo ( t ) u ,  ( 7 )  
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I~ 1 = U I ,  

(f;)l = --c~vt -- f ( u l )  + B sin(c,>t ), 

where 

13 

(8) 
(9) 

co0(t) = A + 2yo 4- 2e~2 2 sgn ( s in (~ t ) ) ,  f ( u l )  = ½ ( f ( x l )  ÷ f ( x 2 ) ) .  

a - 1 i f lx [  < 1, 

A = b -  1 if  Ix l > 1. 

Eqs. (8) and (9) describe the system dynamics in the symmetric synchronization subspace (xl = x2, Yl = 3;2) of  

the complete phase space. Eqs. (6) mad (7) describe evolution transverse to the synchronization subspace, so the 

values tt = 0, V = 0 correspond to the synchronous regime. In order to define the conditions of  the stability of the 

synchronized chaotic oscillations we investigate the evolution of  small perturbations over the parametric influence 

period (T = 2~/~2) of  the fixed point u = 0, v = 0 (Eqs. (6) and (7)). It can be easily carried out by using a 

familiar technique (see, e.g., [23]). After  some algebbraic manipulations one can find the eigenvalues #1,2 which 

characterize the slxtbility of  the symmetric osciUations 

/zl,2 = exp ( -~ , ' r /S2 ) (0 .5S  4- (0.5S 2 - 1) U2), (10) 

where 

S = 2 ( C h ( f l l ) C h ( 1 3 2 )  + K S h ( f l l  )Sh(fl2)),  

/31 = (~/S-2) (0.25ot 2 -- A - 2y0 - eES22) I/2, 

f12 = (zr/S2)(0- 25~2 -- A -- 2?'o ÷ 26-(22) U2, 

K = (0.25ot 2 -- A -- 2y0)/((0.25ot 2 -- A - 2y0) 2 -- 462~4)  U2. 

Synchronization was observed, when Ilz~.21 < 1 at either values of  x from the vicinity of  the symmetric phase 

subspace, i.e., both at A = (z -- 1 and at A = b - 1. It should be noted here that the general conclusion about the 

stability o f  the synchronized state for 1#~,21 < 1 is not straightforward as the considered system is piecewisc linear 

and thc conclusion about its stability cannot be made fi'om the stability of  the system in each linear part of  the phase 

space. 

On the parameter  plane of  Fig. 1 we have plotted the region where the stabilization condition of  the symmctric 

motions is satisfied. The values of  other parmneters of  the system of  coupled oscillators (B = 1.5, w = 1, a = 0.1, 

Y0 = 0.1, a = 0.5, b = 2) are consistent with the case when the regime of  nonsynchronous chaotic oscillations is 

observed in the absence of  the parametric perturbation (6 = 0). 

The computer  experiments on the system (5) have verified the following. The synchronization of  chaotic oscillators 

can be achieved by means of  periodic parametric perturbations of  the coupling~clement. The synchronization of  

chaos is observed namely at such values of  the ampli tude and the frequency of  parametric perturbations which are 

shaded on the parameter  plane of  Fig. 1. As an illustration, the projections of  the phase trajectories are presented in 

Fig. 2 in the absence of  the parametric perturbations (Fig. 2(a)) and with one (Fig. 2(b)). The numerical simulation 

has been carried out as follows. At above the parameter  values, the initial conditions are chosen from the small 

vicinity of  the symmetric subspace: xl (0) = x2(0) + A x ,  yl (0) = 3'2(0) + Ay.  Usually, we choosc Ax  = 0.02, 

Ay = 0.02. Then the phase portraits and the time-series of  the oscillation regimes arc plotted at the varied values of  

the ampli tude 6 and the frequency ,f2. At  ~ = 0 the phase trajectory leaves the vicinity of  the symmetric subspacc 

mad the nonsynchronous chaotic oscillations are observed (see Fig. 2(a)). With parmnctric perturbations the initial 

deviations A x  and Ay  decrease. The phase trajectory enters into the symmetric subspace and evolves therein, if the 
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Fig. 1. Region of symmetric oscillation stability on the parameter plane (e,/2). The values of other parameters are fixed at B = 1.5, 
co= 1, c¢ =0.1, F0 = 0.1, a = 0.5, b =2.  

values E and I-2 are among the dashed region on the parameter plane of  Fig. 1. I f  the values are chosen outside this 

region the initial deviations (Ax, Ay) increase and the synchronous regime is not achieved. 

As can be seen in Fig. 1 the frequency of  the parametric perturbations, by which the synchronization of chaos is 

achieved, has to be larger than the value of  the characteristic frequency of  the nonperturbed motion (in the considered 

case it is the frequency co = 1). In order to achieve the synchronous regime in the system (5) it is sufficient that 
the amplitude of the perturbation of  the coupling coefficient accounts to about 20% of Y0 = 0.1, the frequency of  

which is 15-20 times as coo = 1 (see Fig. 1). 
The preliminary numerical investigations have shown that the synchronization of  chaos appears also in the 

case, when the phase point is placed far from the symmetric subspace at the moment of  the application of  the 

parametrical perturbation: However, in this case, the time of  the transition process to the synchronous chaotic 
regime increases substantially. In the perturbed system the time of reaching of the phase symmetric subspace 
vicinity, where the stabilization mechanism will have acted, is substantially greater than that in the nonperturbed 
system. In conclusion, we have demonstrated the possibility of synchronization of  coupled chaotic oscillators by 
means of  periodic parametric perturbations of  the coupling element. 

It should be noted here that dynamical systems with invariant manifolds are not generic. In most of  the synchro- 
nization schemes of  two identical systems the invariant manifold is a consequence of  the symmetry in the coupled 
system: The effect of  a small asymmetry due to the small differences in the considered systems on the stability of  
the synchronized state was studied elsewhere [24]. 
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Fig. 2. Projection of the phase trajectories in the absence (a) and in presence (b) of the parametric perturbations. Value of parameters are 
B = 1.5, o) = 1, ~ = 0.1, V0 = 0.1, a = 0.5, b = 2. ((b) can be obtained at any e and S2 from the dashed region on the parameter plane 
in Fig. 1). 

We have also mentioned that the presented method can be considered as one of the controlling chaos methods. 

Chaotic attractor, according to the nonsynchronous oscillations, contains the chaotic subset which lies in the sym- 

metric subspace of the complete phase space. When the dynamical system evolves on the chaotic attractor, its phase 

point visits from time to time the small vicinity of the symmetric subspace. If the periodic parametric perturbation 

is applied at this moment, the phase point enters the symmetric subspace and evolves therein and the parametric 

perturbation does not act on the regime of symmetric motions. 

V. As., and A. Sh. acknowledge support from Russian Foundation of Fundamental natural Sciences (grant 95-0- 

8.3-6.6), T.K. was supported by KBN (Poland) under project no. 7T07A 039 10. 
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