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Torus on-off intermittency in coupled Lorenz systems
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In this paper we describe an example of on-off intermittency linked with the destruction of the torus attractor
of a pair of coupled chaotic Lorenz systems. We show that this intermittency has similar properties to on-off
intermittency linked with the destruction of the synchronized chaotic attractor located on the system invariant
manifold and propose a possible mechanism for it.@S1063-651X~97!09512-3#
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The study of coupled chaotic systems has become v
popular among researchers in recent years, stimulated b
various applications@1–10#. As an example, a particular re
sult of some importance is that two identical chaotic syste
ẋ5 f (x) and ẏ5 f (y), x,yPRn, n>3, evolving on an as-
ymptotically stable chaotic attractorA, when one-to-one
coupling

ẋ5 f ~x!1d1~y2x!, ẏ5 f ~y!1d2~x2y! ~1!

is introduced, can be synchronized for some ranges ofd1,2
PR, i.e., ux(t)2y(t)u→0 ast→` @1#.

In the synchronized regime the dynamics of the coup
system~1! is restricted ton-dimensional invariant subspac
x5y, so the problem of synchronization of chaotic syste
can be understood as a problem of stability of
n-dimensional chaotic attractorA in 2n-dimensional phase
space@8–10#. The dynamics of the system~1! is described
by two sets of Lyapunov exponents. One of theml1

5(l1 ,...,ln) describes the evolution on the invariant ma
fold x5y and at least one of the exponentsl i , i
51,2, . . . ,n, is always positive. The second setl2

5(ln11 ,...,l2n) contains exponents that characterize evo
tion transverse to this manifold and is called transversa
all transversal Lyapunov exponents are negative, the inv
ant setA is an attractor, at least in the weak Milnor sen
@11#.

Shortly after the moment when the largest transve
Lyapunov exponent becomes positive one can observe
phenomenon of on-off intermittency, which is characteriz
by temporarily intermittent bursting out of the attractorA
~invariant manifoldx5y! and relatively long evolution nea
A @12–16#. This form of bifurcation leading to the on-of
intermittency has been also called blowout bifurcati
@15,16#. On-off intermittency has been found to be typic
for systems with an invariant manifold~or manifolds! and is
one of the ways in which a chaotic attractor located on
invariant manifold can lose its stability.

In this paper we show that a similar mechanism of on-
intermittency can be observed when the attractor of the
tem ~1!, which in this case is not an attractor of subsyst
ẋ5 f (x) or ẏ5 f (y) and so is not located on the invaria
571063-651X/98/57~1!/1175~3!/$15.00
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manifold, loses stability. We consider the dynamics of tw
different Lorenz systems coupled by nonsymmetrical one
one coupling

dx1

dt
52s~x12y1!1d1~x22x1!,

dy1

dt
52x1z11r 1x12y11d1~y22y1!,

dz1

dt
5x1y12bz11d1~z22z1!,

~2!

dx2

dt
52s~x22y2!1d2~x12x2!,

dy2

dt
52x2z21r 2x22y21d2~y2y2!,

dz2

dt
5x2y22bz21d2~z2z2!,

wheres,b,r 1,2,d1,2PR are constant. We assume that ea
uncoupled system (d15d250) evolves on chaotic attractors
We have discussed the possibility of chaos synchroniza
in such a system and its geophysical implications in@17#; in
@18# we showed that the attractor of two chaotic syste
coupled in this way can be reduced to the fixed point.

In our numerical simulations we tooks510, b5 8
3 , r 1

5197, r 25150, andd253 and consideredd1 as a control
parameter. Ford150.960 the evolution of the system take
place on the three-dimensional torusT. The spectrum of
Lyapunov exponents of the typical orbit can be divided in
two subsets:l1 ~l150, l250, andl3520.1! describing
evolution on the torus andl2 ~l4527.42,l55214.34, and
l65217.36! describing evolution transverse to the torus.
two-dimensional cross section of the torusT is shown in Fig.
1.

At d1
c51.019 the torus breaks down and we observe

off intermittency in thed1 interval@1.019,1.100#. During this
intermittency a typical trajectory evolves for some relative
long period of timetT in the neighborhood of the broke
torus and occasionally bursts out of it. A two-dimension
1175 © 1998 The American Physical Society
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cross section of the neighborhood of the destroyed toruT
and a time series typical for this behavior are shown in Fi
2~a! and 2~b!. In this case the spectrum of Lyapunov exp
nents is as follows: l150.29, l250, l3
520.49, l4527.29, l55214.19, andl65217.67 and
the system trajectory evolves on the chaotic attractor loca
in the neighborhood of the destroyed torusT.

At the beginning of the intermittency atd1
c51.019, one of

the transverse Lyapunov exponents becomes positive, s
nonzero measure set of points with one unstable direct
occurs on the torus. The system trajectory entering this
leaves the torus along the unstable manifold and after
evolution out of the neighborhood of the destroyed torusT
~the burst! is diverted back into this neighborhood. The a

FIG. 1. Two-dimensionalx12x2 cross section of the torusT.
s510, b5

8
3 , r 15197, r 25150,d150.960, andd253.

FIG. 2. ~a! Two-dimensionalx12x2 cross section of the torus
T. s510, b5

8
3 , r 15197, r 25150,d151.020, andd253. 3 in-

dicates unstable periodic orbits of saddle type.~b! Time series of
torus on-off intermittency.
s.
-
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erage time period of the evolution in the neighborhood of
broken torustT scales with the distance from the bifurcatio
point (d12d1

c) as

tT;~d12d1
c!1/2. ~3!

This relation is the same as for classical intermittency of ty
I ~connected with saddle-node bifurcation!.

The mechanism of the observed on-off intermitten
based on torusT can be explained in the following way
During a torus breakdown bifurcation a positive measure
A of points on the torus undergoes a bifurcation schem
cally described in Figs. 3~a! and 3~b!, after which one of the
directions transverse to the torus becomes unstable. Sim
neously, in the neighborhood of the torus, unstable perio
orbits of a saddle type~with at least one stable direction! are
formed. The envelope of unstable manifolds of these or
forms the threshold for the evolution of the trajectory, mak
the expansion too far from the neighborhood of the destro
torus impossible, and enforces the trajectory’s return to
neighborhood.

The mechanism described is the generalization to high
dimensional phase space of the bubbling transition mo
which we have recently identified in coupled logistic ma
@19#. In this work we prove that the transition point to on-o
intermittency after the destruction of a synchronized chao
attractor is associated with the occurrence of an unstable
riodic orbit of saddle type; its unstable manifold bounds t
region near the destroyed attractor, so that the system tra
tory is not allowed to leave it.

In the present system, due to the six-dimension ph
space, it is impossible to prove that the proposed mechan
is the only possible way to on-off intermittency. We ha
found some numerical evidence that our mechanism is p
sible by identifying several unstable orbits in the neighb
hood of the destroyed torus and estimating their unsta
manifolds on the two-dimensional cross section. These
sults are shown in Fig. 2~a!. The conjectured envelope of th
unstable manifolds surrounds the region of the phase sp
where the destroyed torus was located. At the end of
on-off intermittency interval some further bifurcation on th

FIG. 3. Mechanism of torus on-off intermittency~a! before bi-
furcation and~b! after bifurcation.
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unstable periodic orbits of saddle type can lead to the
ation of holes in the envelope or allow creation of sta
attractors in different regions of the phase space.

In summary, we have presented a model consisting of
coupled chaotic Lorenz systems that exhibits on-off interm
tency after the destruction of a torus attractor that is
located on the invariant manifold.~Our example shows tha
on-off intermittency can occur also after the destruction
regular attractors that are not located on the invariant m
fold.! Near the transition point, shortly after one of the tran
,
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verse Lyapunov exponents becomes positive, we obse
universal scaling behavior with a scaling exponent equa
the characteristic for classical type-I intermittency. We a
proposed a mechanism based on the bifurcation of sa
periodic orbits that can be responsible for the observed in
mittency.
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