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Torus on-off intermittency in coupled Lorenz systems
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In this paper we describe an example of on-off intermittency linked with the destruction of the torus attractor
of a pair of coupled chaotic Lorenz systems. We show that this intermittency has similar properties to on-off
intermittency linked with the destruction of the synchronized chaotic attractor located on the system invariant
manifold and propose a possible mechanism fof31.063-651X97)09512-3

PACS numbds): 05.45+b

The study of coupled chaotic systems has become vergnanifold, loses stability. We consider the dynamics of two
popular among researchers in recent years, stimulated by tlt#fferent Lorenz systems coupled by nonsymmetrical one-to-
various application§l—-10. As an example, a particular re- one coupling
sult of some importance is that two identical chaotic systems

x=f(x) andy="f(y), x,yeR", n=3, evolving on an as- %:_ _ B
ymptotically stable chaotic attractoh, when one-to-one dt o (x1=y1) + 106 x),
coupling

dy;
T —X1Z1+ 11X, =Y+ di(Y2— Y1),

x=f(x)+di(y=x), y="f(y)+da(x=y) D

dz;
szlyl_bzl+dl(z2_zl)y
is introduced, can be synchronized for some ranged, of 2
eR, ie.,|x(t)—y(t)|—0 ast—cx [1]. dx
In the synchronized regime the dynamics of the coupled — 2 = (Xp— V) + Xy — X,),
system(1) is restricted ton-dimensional invariant subspace dt
X=Yy, so the problem of synchronization of chaotic systems dy
can be understood as a problem of stability of an 2 —XoZp+ T o Xo— Yot do(Y—V5),
n-dimensional chaotic attract@k in 2n-dimensional phase dt
space[8—10. The dynamics of the systefi) is described
by two sets of Lyapunov exponents. One of thexh %:X —bzy+ dy(z—2,)
=(\y,...,\) describes the evolution on the invariant mani- dt (Y2 PeT 20

fold x=y and at least one of the exponents, i
=1,2,...n, is always positive. The second set?® Whereo,b,r;,,d;,eR are constant. We assume that each
=(Nn+1,---,\2n) CONtains exponents that characterize evolu-Uncoupled systemd = d,=0) evolves on chaotic attractors.
tion transverse to this manifold and is called transversal. WWe have discussed the possibility of chaos synchronization
all transversal Lyapunov exponents are negative, the invari such a system and its geophysical implication§lifi; in
ant setA is an attractor, at least in the weak Milnor sense[18] we showed that the attractor of two chaotic systems
[11]. coupled in this way can be reduced to the fixed point.
Shortly after the moment when the largest transversal In our numerical simulations we took=10, b=3, r;
Lyapunov exponent becomes positive one can observe the197,r,=150, andd,=3 and considered; as a control
phenomenon of on-off intermittency, which is characterizedparameter. Fod;=0.960 the evolution of the system takes
by temporarily intermittent bursting out of the attractar ~ place on the three-dimensional torlis The spectrum of
(invariant manifoldx=y) and relatively long evolution near Lyapunov exponents of the typical orbit can be divided into
A [12-16. This form of bifurcation leading to the on-off two subsetsA® (\;=0, \,=0, and\3=—0.1) describing
intermittency has been also called blowout bifurcationevolution on the torus ank® (\ 4= —7.42,\ 5= —14.34, and
[15,16. On-off intermittency has been found to be typical A¢= —17.38 describing evolution transverse to the torus. A
for systems with an invariant manifolgr manifolds and is  two-dimensional cross section of the tofliss shown in Fig.
one of the ways in which a chaotic attractor located on thel.
invariant manifold can lose its stability. At d{=1.019 the torus breaks down and we observe on-
In this paper we show that a similar mechanism of on-offoff intermittency in thed, interval[1.019,1.10Q During this
intermittency can be observed when the attractor of the sysatermittency a typical trajectory evolves for some relatively
tem (1), which in this case is not an attractor of subsystemlong period of timer; in the neighborhood of the broken
x=f(x) or y=f(y) and so is not located on the invariant torus and occasionally bursts out of it. A two-dimensional
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FIG. 1. Two-dimensionak,;— X, cross section of the torug.
0=10,b=2, r,=197,r,=150,d,=0.960, andd,=3.

®)

FIG. 3. Mechanism of torus on-off intermitten¢g) before bi-

cross section of the neighborhood of the destroyed tdrus furcation and(b) after bifurcation.

and a time series typical for this behavior are shown in Figs. . ) o )

2(a) and 2b). In this case the spectrum of Lyapunov expo_erage time period of the_evolutlo_n in the nelghborh_ood of the
nents is as follows: A;=0.29, X\,=0, As bquen torusry scales with the distance from the bifurcation
=—0.49, \,=—7.29, Ng= — 14.19, and\g=—17.67 and Point (d;—dj) as

the system trajectory evolves on the chaotic attractor located 12

in the neighborhood of the destroyed torlis T~ (dy—dp) ™= ©)

At the beginning of the intermittency &f =1.019, one of
the transverse Lyapunov exponents becomes positive, so
nonzero measure set of points with one unstable directio
occurs on the torus. The system trajectory entering this set
leaves the torus along the unstable manifold and after a
evolution out of the neighborhood of the destroyed tofus
(the burst is diverted back into this neighborhood. The av-

This relation is the same as for classical intermittency of type
h connected with saddle-node bifurcation

The mechanism of the observed on-off intermittency
ased on torug can be explained in the following way.
During a torus breakdown bifurcation a positive measure set
A of points on the torus undergoes a bifurcation schemati-
cally described in Figs.(3) and 3b), after which one of the
directions transverse to the torus becomes unstable. Simulta-
neously, in the neighborhood of the torus, unstable periodic
orbits of a saddle typéwith at least one stable directipare
formed. The envelope of unstable manifolds of these orbits
forms the threshold for the evolution of the trajectory, makes
the expansion too far from the neighborhood of the destroyed
torus impossible, and enforces the trajectory’s return to this
neighborhood.

The mechanism described is the generalization to higher-
dimensional phase space of the bubbling transition model,
which we have recently identified in coupled logistic maps
[19]. In this work we prove that the transition point to on-off
intermittency after the destruction of a synchronized chaotic
attractor is associated with the occurrence of an unstable pe-
riodic orbit of saddle type; its unstable manifold bounds the
region near the destroyed attractor, so that the system trajec-
tory is not allowed to leave it.

In the present system, due to the six-dimension phase
space, it is impossible to prove that the proposed mechanism
is the only possible way to on-off intermittency. We have
found some numerical evidence that our mechanism is pos-

Toee  Sible by identifying several unstable orbits in the neighbor-
t hood of the destroyed torus and estimating their unstable
manifolds on the two-dimensional cross section. These re-

FIG. 2. (a) Two-dimensionalx,—x, cross section of the torus sults are shown in Fig.(3). The conjectured envelope of the
T. ¢=10,b=%, r,=197,r,=150,d,=1.020, andd,=3. x in-  unstable manifolds surrounds the region of the phase space
dicates unstable periodic orbits of saddle ty(i®. Time series of where the destroyed torus was located. At the end of the
torus on-off intermittency. on-off intermittency interval some further bifurcation on the
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unstable periodic orbits of saddle type can lead to the creverse Lyapunov exponents becomes positive, we observed

ation of holes in the envelope or allow creation of stableuniversal scaling behavior with a scaling exponent equal to

attractors in different regions of the phase space. the characteristic for classical type-I intermittency. We also
In summary, we have presented a model consisting of tw@roposed a mechanism based on the bifurcation of saddle

coupled chaotic Lorenz systems that exhibits on-off intermit-periodic orbits that can be responsible for the observed inter-
tency after the destruction of a torus attractor that is notpittency.

located on the invariant manifoldOur example shows that

on-off intermittency can occur also after the destruction of This work has been supported by the KBRbland under
regular attractors that are not located on the invariant maniProject No. 7TO7A 039 10 and EPSROnited Kingdom
fold.) Near the transition point, shortly after one of the trans-Grant No. GR/K 92856.

[1] H. Fuijsaka and T. Yamada, Prog. Theor. Phy§, 1240 [11] J. Milnor, Commun. Math. Phy€9, 177 (1985.

(1983. [12] H. Fujisaka and T. Yamada, Prog. Theor. Phyd, 919
[2] V. S. Afraimovich, N. N. Verichev, and M. |. Rabinovich, (1985.

Radiophys. Quantum Electro89, 795 (1986. [13] A. Pikovsky and P. Grassberger, J. Phys24 4587 (1991).
[3] L. Pecora and T. S. Carroll, Phys. Rev. L&, 821(1990. [14] N. Platt, E. A. Spiegel, and C. Tresser, Phys. Rev. LZt.
[4] L. Pecoraand T. S. Carroll, IEEE Trans. Circuits Sg§&.453 279 (1993.

(1999. [15] P. Ashwin, J. Buescu, and |. Stewart, Phys. Lett193 126

[5] V. S. Anishchenko, T. E. Vadivasova, D. E. Postnov, and M. (1994,

A. Safanova, Radio Eng. Electron. Ph§, 338 (1991. [16] P. Ashwin, J. Buescu, and |. Stewart, Nonlinear@ty 703
[6] T. Endo and L. O. Chua, Int. J. Bifurcation Chabs 701

(1991 (1996.
: . ) [17] A. Stefarski, T. Kapitaniak, and J. Brindley, Physica @8,
[7] M. De Sousa, A. J. Lichtenberg, and M. A. Lieberman, Phys. 594 (1996

Rev. A 46, 7359(1992.
[8] Y.-C. Lai and C. Grebogi, Phys. Rev. &, 2357(1993.
[9] T. Kapitaniak, Phys. Rev. B0, 1642(1994).
[10] T. Kapitaniak, L. O. Chua, and G.-Q. Zhong, Int. J. Bifurcation
Chaos4, 483(1994.

[18] A. Stefarski and T. Kapitaniak, Phys. Lett. 210, 279(1996.
[19] V. Astakhov, A. Shabunin, T. Kapitaniak, and V. Anish-
chenko, Phys. Rev. Let?.9, 1014(1997.



