
a . __ __ l!B 
20 April 1998 

PHYSICS LETTERS A 

ELSEVIER Physics Letters A 241 ( 1998) 41-45 

Preserving transient chaos 
T. Kapitaniak a,b, J. Brindley b 

a Division of Dyamics, Technical University of Lodz., Stefanowskiego l/15, 90-924 Lodz, Poland 
h Department ($ Applied Mathematical Studies. University of Leeds. Leeds LS2 9J7: UK 

Received 14 August 1997; revised manuscript received 17 December 1997; accepted for publication 28 January 1998 

Communicated by A.P. Fordy 

Abstract 

We present a controlling method which allows either the preservation of transient chaos or a significant decrease of 
its lifetime. For the description of transient chaotic evolution we introduce practical Lyapunov exponents. Success of the 
method requires some knowledge, based on observation, of the character of the chaotic repeller which drives the transient 
chaos, but its application is then straightforward. @ 1998 Elsevier Science B.V. 
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1. Introduction 

Most of the chaotic attractors which are met with 
in practical systems are quasi-attractors, i.e., the limit- 

ing sets of enclosing periodic orbits of different topo- 
logical types, structurally unstable homoclinic trajec- 

tories. etc. [ I]. Practical systems are mainly quasi- 

hyperbolic [ 21, i.e., many different types of attractors 
co-exist in the phase space. In such systems we often 
observe the phenomenon of transient chaos, where for 
almost all initial conditions within some practically 
important range, the system trajectory evolves on a 
strange chaotic repeller for significantly long period 
of time, r say, and afterwards, for t > 7, converges 
to the regular attractor [3,4]. The value of 7 will of 
course vary from trajectory to trajectory, and may be 
very sensitive to the initial conditions, but we will in 
the rest of this Letter assume 7 to be some represen- 

tative average. 
From a practical point of view, there is often not 

much difference between transient and permanent 
chaotic behavior as, for example, (i) the working 
time (T) of engineering devices can be shorter than 7 

and a system cannot reach its final attractor; (ii) the 
lifetime of transient chaos 7 is longer than any rea- 

sonable observation period of time (T) in biological 

or geophysical systems. 

On the other hand, practical systems are always un- 
der the influence of both permanently acting and short 
time impulse-like perturbations. These perturbations 
can affect the system evolution, causing a switch to 
another co-existing attractor, or can significantly in- 
crease or decrease the transient lifetime 7, in some 
cases leading to a catastrophic failure in a practical 
sense. 

The above reasons make the problem of controlling 
transient chaos important not only theoretically but 
also from the point of view of possible practical ap- 
plications. In a pioneering work [ 51 Tel showed that 
transient chaos can be controlled by the Ott-Grebogi- 
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Fig. 1. Transient chaotic evolution of system (21: CI = 10, b = S/3, 

Y = 23.2, s(0) = 2. v(O) = 0, :(Of = 4s. 

Yorke method [ 63 and replaced by an appropriate pe- 
riodic behavior. In this Letter, we take a different ap- 
proach and present a controlling method which can 
also allow preservation of transient chaos. 

As an example, we consider the dynamics of a par- 
ticular but representative model of a continuous sys- 
tem, 

where the system parameter r E Iw and X E IKE?, 
namely the Lorenz system 

dx- 
- = -Cf(X-JJ), 
dt 

!? = --.y;: + TX - y 
dt 

3 

%=xli-B 
dt “’ 

t. 

where cr, 6, Y E Iw are constant. It is well known 

that the system (2) exhibits transient chaotic behav- 
ior for r E ( 13.96,24.74). In this case a system tra- 
jectory evolves for a significantly long period of time 
on a strange chaotic repeller (with a shape similar to 
the well-known Lorenz attractor) before converging 
to one of the fixed points Cl,2 = (+[h(r - I)]“‘, 
i[D(u - 1)1”2, r - 1). Such a trajectory is shown 
in Fig. 1, where the trajectory ultimately converges to 
c:= i--[&r- l)]‘/‘, -[b(r- l)]“l, r- 1). 

2. Controlling procedure 

In this section, we present the controlling procedure 

which can allow us either to preserve the transient 

chaotic behavior or, alternatively, to significantly re- 
duce the lifetime of transient evolution. To achieve this 
goal we assume that one of the system parameters, let 

us say r, can be adjusted finely around a nominal value 

ro, i.e., r E [ro + Ar, ro - Ar], where Ar/ro < I. 

Observation of the system behavior allows the de- 
termination of a phase space region which a trajectory 

r(t) must enter shortly before converging to the fixed 
point. This region will be called a dangerous zone and 

will be indicated by if>. In the neighborhood of ‘D one 
can identify a number, K say, of trajectories yk ( t ) go- 

ing out of this neighborhood and evolving further on 
the chaotic repeller. We can further identify a set S of 

points 7; on these trajectories which we called a safe 
set. A schematic of zone D and set S estimated for 

the Lorenz system ( 1)) is shown in Fig. 2. 
In the Lorenz system the identification of the 

dangerous zone 2) is straightforward as it is well 
known [ 41 that the occurrence of the transient chaos 
is connected with the breakdown of the homoclinic 
orbit of unstable fixed point (0, 0, 0), and zone D 
therefore lies in the neighborhood of the unstable 
manifold of the fixed point f 0, 0, 0). Alternativety 
2, can be identified in the neighborhoods of stable 

fixed points Cl.?. Based on the same arguments, the 

dangerous zone can be identified in other systems 

like Duffing’s, Chua’s, etc. For example in Ref. [ 71, 

we identified the dangerous zone on a double-scroll 
attractor and applied control which forced the system 
to evolve on one scroll only. 

V can be estimated also when the equations of mo- 
tion are unknown and our knowledge of the system 
is based on a scalar time series. In this case, one can 
construct a return map x,,+I = f(x,) and identify pre- 
images of points going straight to the fixed points. 
There, pre-images define the dangerous zone ( see. e.g. 
Ref. [S]). 

Our controlling method which allows the preserva- 
tion of transient chaos consists of three steps, 

(i) estimation of the dangerous zone DD; 
(ii) identification of trajectories yk( t) in the neigh- 

borhood of ‘D which allow further evolution on the 
chaotic repeller and creation of the safe set S of points 
~1 in the e-neighborhood of D: 
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Fig. 2. (a) Idea of the controlling method, and (b) the dangerous 

zone V and safe set S for the system (2) 

(iii) introduce a small temporal change of one of 

the system parameters to allow the system to switch 
from actual trajectory r(t) E D to one of the safe 
ok trajectories. 

To control a trajectory r(t) which enters the dan- 

gerous zone D we use a simple feedback procedure. 
Suppose that the trajectory of the N-dimensional map 
X rr+l = M(.hl, Y) (the numerical solution of Eqs. ( 1) 
can be considered as an example of such a map), 
entering the set 2) falls into a E-neighborhood of a 
point r; in the safe set S, i.e., In, - ynl 6 E, where 

y,!, representing the point rl, and its future iterates 

y,,+i , y,,+z, . constitute a safe trajectory going away 
from the dangerous set 2). In the neighborhood of x,, 
we can consider the following linearized dynamics 

A.G+I = DM(x,, r)Ax, + ?A,,,, (3) 

Fig. 3. Controlled trajectory ofthe system (2); x(O) = I, ~(0) = 0. 

z(O) = 4s. 

where AX,, = x, - y,,, Ar, = r,, - ro, and the Jacobian 
DM(x,, r), and the vector dM/dr are calculated at 

X, = yn and r, = rg respectively. If we choose a unit 

vector u in the phase space and let u be orthogonal 

to Ax,,, = 0, we obtain the r-parameter perturbation 
necessary to achieve control, 

Ar, = - 
uDM(x,, r)Ax, 

udM/dr ’ (4) 

The unit vector can be chosen arbitrarily provided that 
(i) it is not orthogonal to x,,+i , and (ii) the denomi- 

nator in Eq. (4) is not zero. 
We now use this approach to control the system (2). 

The set D = {(x,y,z); -0.02 < x.y < 0.02,3.5 < 
z < 4.5) was taken as in Fig. 2b (without control. 
after the transient chaotic evolution of an average life- 
time, here taken to be 7 = 690, trajectories converge 
to one of the fixed points). We assume that the acces- 
sible parameter r can be slightly perturbed around its 
nominal value ro = 23.2, and we take the maximum 

allowed parameter perturbation Ar,,, to be 10-l. We 
them create a safe set S, which consists of 200 points 
r; E {(x,y,z) : -0.04 < x,y < 0.04.3.49 < 
z < 4.51) - V, and in the controlling procedure take 
E = 10e2. With such a control we insure preservation 

of transient chaos. An example of controlled evolution 
is shown in Fig. 3. 

A practical consideration is that the number of 
points y; in the safe set S should be large enough to 
avoid a situation in which the trajectory entering dan- 
gerous zone 27 will be switched to the same r; point 
all the time. In this case transient chaotic behavior can 



be replaced by long period periodic evolution. With a 

great number of y; points, even if a periodic trajec- 
tory is created, its period Tp will be long enough that 

from the point of view of practical applications it can 

be considered as chaotic. In this case (see below in 
Section 3) the topological and dynamical properties 

of chaos are preserved for all t < T, where T( < Tp) 
is the time limit of operations or observations. 

It should be noted here than the described method 
can be applied also to control transient chaos in the 
way to allow the quickest possible convergence to the 
fixed points. In this case our procedure can be “in- 
verted” so that the dangerous zone D becomes a de- 
sired zone and all trajectories entering its neighbor- 
hood will be forced into it by the temporal change of 

system parameter. Controlling the transient evolution 
of the system (2) with the conditions given in the pre- 

vious paragraph we managed to reduce the average 
lifetime of transient chaos to r = 130. 

An alternative controlling method for preserving 
transient chaos was proposed by Lai et al. [ 9, IO]. In 
their approach the OGY chaos controlling method was 
applied to stabilize a selected nonattracting chaotic tra- 

jectory, say x(t). The system trajectory x( r> is forced 
to stay in the neighborhood of this selected trajectory 
by small temporal perturbations applied to the system 
whenever the distance between n(t) and x(t) is larger 

than an assumed value E. In our method we create 

an artificial chaotic trajectory which consists of parts 
of nonattracting chaotic trajectories imbedded in the 

chaotic repeller; the control is applied when the sys- 
tem trajectory enters the dangerous zone D. 

3. Practical Lyapunov exponents 

The evolution of the system ( 1) on its attractor 
can be described by the spectrum of the Lyapunov 

exponents [4.7]. The Lyapunov exponents are given 
by the limit 

where Y(t) is the solution of the linearized equation 
Y = af/a.rY and j/./I is a norm in R”. 

Lyapunov exponents given by the limit for t ---f cc 
cannot be used for a description of the system evolu- 
tion during the transient chaos. For this description we 

propose the average value of the transient Lyapunov 
exponents is given by 

where 

(6) 

A(t) = 5 In J/Y(t)//. 

and T < c-, i.e. practical Lyapunov exponents are cal- 
culated for as long as the trajectory evolves on the 
chaotic repeller. 

Exponents given by the formula (6) describe the 
dependence on the initial conditions of trajectories 

evolving on the strange chaotic repeller (temporal di- 
vergence or convergence of nearby trajectories during 

transient chaotic evolution). We propose to call them 
practical Lyapunov exponents. 

For the system (2) practical Lyapunov expo- 
nents for transient chaotic behavior (T = 6'30) are 
0.72f0.01. 0, -14.27 iO.01. For the controlled 
evolution of Fig. 3 we obtain the values 0.73 rir: 0.01, 
0, - 14.25 + 0.01 for T = 6000 and observe that these 

values do not change with the increase of T. In other 
words the chaotic behavior is maintained in a sort of 

“steady state” indefinitely. 

Note that practical Lyapunov exponents are the 
same idea as truncated or local Lyapunov expo- 
nents [ 11,121. In our case the time T for which they 

are estimated is determined by practical reasons rather 
than lack of data. 

4. Conclusions 

The method presented allows control of transient 
chaotic systems when our goal is to 

(i) preserve transient chaos (not allowing the sys- 

tem to converge to regular attractor) ; 
(ii) reduce the lifetime of the transient behavior 

(forcing the system to reach a regular attractor in the 
shortest possible time) 

To achieve our goals we have to have knowledge of 
the system dynamics, but not necessarily the equations 
of motion (in this case the dangerous zone V and safe 
set S can be estimated from the map obtained from ex- 
perimental time series [ 81)) which is usually the case 
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in practical systems, and must be able to apply a small 
temporal change in one of the system parameters. 

Additionally, we have introduced practical Lya- 

punov exponents obtained by averaging over a finite 

time T (shorter than the transient lifetime 7). Such 

practical Lyapunov exponents describe the depen- 

dence on the initial conditions during the evolution 
on a strange chaotic repeller. 

We hope that the method can be useful in control- 
ling practical dynamical systems which exhibit tran- 
sient chaos, and that the concept of practical Lyapunov 
exponents will be useful in the description of transient 

chaos. 
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