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Bifurcations from locally to globally riddled basins
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We give sufficient conditions for the occurrence of locally and globally riddled basins in coupled systems.
Two different types of bifurcations from locally to globally riddled basins are described.
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The phenomenon of riddled basins@1# has become an
important focus in the study of nonlinear dynamics. The
studies are important not only from a theoretical point
view, leading to better understanding of chaotic systems,
from the point of view of possible applications as well. Ri
dling typically occurs in chaotic systems with symmetric i
variant manifolds, which are often encountered in chaos s
chronization schemes@2#, particularly those used for secur
communication@3#. In such systems riddling can lead to th
loss of synchronization.

Consider two identical chaotic systems,xn115 f (xn) and
yn115 f (yn), x,yPR, evolving on anasymptotically stable
chaotic attractor A ~the setA is an asymptotically stable
attractor if for any sufficiently small neighborhoodU(A) of
A there exists a neighborhoodV(A) of A such that if x
PV(A) then f n(x)PU(A) for any nPZ1 and distance
r@ f n(x); (A)→0, n→`#. With one-to-one coupling we
have to consider the two-dimensional mapF(x,y):R2→R2,
given by equations

xn115 f ~xn!1d1~yn2xn!,
~1!

yn115 f ~yn!1d2~xn2yn!.

In this case the systems can be synchronized for some ra
of d1,2PR, i.e., uxn2ynu→0 asn→` @2#.

In the synchronized regime the dynamics of the coup
system~1! is restricted to a one-dimensional invariant su
spacexn5yn , so the problem of synchronization of the ch
otic systems can be understood as a problem of stability
one-dimensional chaotic attractorA in two-dimensional
phase space@1,2#.

We define the basin of attractionb(A) to be the set of
points whosev-limit set is contained inA. In Milnor’s defi-
nition @4# of an attractor, the basin of attraction need n
include the whole neighborhood of the attractor; we say t
A is a weak Milnor attractor ifb(A) has positive Lebesgu
measure. A riddled basin@1# that has been found to be typ
cal for a certain class of dynamical systems with a o
dimensional invariant subspace@like xn5yn in the example
~1!# has positive Lebesgue measure but does not contain
neighborhood of the attractor. In this case basin of attrac
b(A) may be a fat fractal so that any neighborhood of
571063-651X/98/57~6!/6253~4!/$15.00
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attractor intersects the basin with positive measure, but m
also intersect the basin of another attractor with posit
measure.

The dynamics of system~1! is described by two
Lyapunov exponents. One of them describes the evolution
the invariant manifoldx5y and is always positive. The sec
ond exponent characterizes evolution transverse to this m
fold and it is called transversal. If the transversal Lyapun
exponentl' is negative, the setA is an attractor at least in
the weak Milnor sense@4#, i.e., setA is a weak Milnor at-
tractor if its basin of attractionb(A) has positive Lebesgue
measure inR2.

When the transversal Lyapunov exponent is still negati
but trajectories exist in the attractorA that are transversally
repelling,A is a weak Milnor attractor with alocally riddled
basin,~a setA is an attractor with locally riddled basin o
attraction if there is a neighborhoodU of A such that given
any neighborhoodV of any point inA, there is a set of points
in VùU of positive Lebesgue measure that leavesU in a
finite time!.

This riddling property has a local character. It describ
behavior only in a sufficiently small neighborhoodU
5U(A) and it gives no information about further behavior
the trajectories after they leaveU. In the model under con-
sideration, different situations relating to this global dyna
ics property take place. Two of the most common of the
are the following@5#.

~i! Locally riddled basin.After leaving neighborhood
U(A), almost all trajectories come back toU. Then, some
fraction of them, after a finite number of iterations, leavesU
again, and so on. Dynamics of such trajectories displays n
regular temporal ‘‘bursting:’’ a trajectory spends some tim
~usually a long time! near attractorA, than leaves; then, afte
some more time~usually short! it reenters neighborhoodU.

~ii ! Globally riddled basin.After leavingU(A), a positive
measure set of points goes to another attractor~or attractors!
or to infinity. This other attractor may be, for instance,
attracting fixed point or an attracting cycle of chaotic tw
dimensional sets.

Only in the globally riddled case can the basin of attra
tion b(A) have the riddled structure of a fat fractal as
subset ofR2. In this case the neighborhood of any poi
( x̄,ȳ)Pb(A) is filled by a positive Lebesgue measure set
points (x,y) that are attracted to another attractor~or attrac-
tors!.
R6253 © 1998 The American Physical Society
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In this paper we identify and describe the bifurcations t
appeared after riddling bifurcation and result in the transit
from locally to globally riddled basins, and discuss the co
ditions for basins of attraction to be one or the other.

Riddling bifurcation occurs when some pointxp ~unstable
fixed or periodic point embedded in the chaotic attractorA in
the invariant manifold! loses its transverse stability as a co
pling parameterp passes though the critical valuep5pc .
Lai et al. @7# showed that the loss of transverse stability m
be induced by the collision atp5pc of two repellersr 1 and
r 2 , located symmetrically with respect to the invaria
manifold, with the saddle atxp . The result of this bifurcation
was that a tongue opens atxp and all preimages ofxp , al-
lowing trajectories near the invariant manifold to esca
from theU neighborhood ofA for p.pc , as shown in Fig.
1. Since preimages ofxp are dense in the invariant manifold
there is an infinite number of tongues, and a set of po
leaving theU neighborhood has a positive Lebesgue m
sure. Note that this scenario is for the case wherexp under-
goes~in transversal direction! a subcritical pitchfork bifurca-
tion ~corresponding to multiplicator crosses that are thou
to be 11!. A similar riddling mechanism works whenxp
undergoes a subcritical period-doubling bifurcation~multi-
plicator crossing is thought to be21! when the loss of trans
versal stability is induced by the collision atp5pc of only
the one repellerr of the double period, the points of whic
are located symmetrically with respect to the invariant ma
fold with saddle atxp . Moreover, there are completely di
ferent riddling scenarios in the case where saddlexp under-
goes a supercritical bifurcation in the transversal direct
@5,7#. We have found here that the riddling scenarios
piecewise linear maps are quite different; at the moment
the transversal multiplicator of the saddle atxp crosses11
~or 21), there is no direct collision of the repellers~or single
repeller! with the saddle. Before the bifurcation, these rep
lers ~or single repeller! can exist but are located far from th
invariant manifold. The bifurcation can change each of th
to a saddle, or even into the attractor@8#.

After leavingU a trajectory may or may not be capture
by another attractor. If it is not captured it returns toU and
the basin of attractorA is locally riddled. We will give evi-
dence shortly that in order for a trajectory leaving the nei
borhood ofU to be captured by another attractor, one of t
following conditions has to be fulfilled.

FIG. 1. l-g riddling bifurcations.
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~1! A new attractor has to be born in one of the tongu
inside the absorbing areaA(A).

~2! The boundary of the immediate basinb̄(A) is broken
as a result of the boundary crisis with the absorbing a
A(A).

A new attractor is born in the repeller~saddle!-attractor
bifurcation. After a riddling bifurcation a repeller~saddle!
occurs due to the mechanism described in Ref.@7# and before
transformation to the stable attractor repeller can unde
further bifurcations.

When one of the above conditions is fulfilled, say atp
5pcc , the basin of attractorA becomes globally riddled and
all trajectories leaving neighborhoodU converge to anothe
attractor. This global bifurcation, which occurs atp5pcc ,
we call alocal-global ~l-g! riddling bifurcation. It is said to
be inner~outer! if condition ~1! @Eq. ~2!# is fulfilled.

The transition from asymptotically stable attractorA to
globally riddled attractorA occurs after a sequence of loc
riddling bifurcations@6# and al-g riddling bifurcation of ei-
ther inner or outer type. These sequences of bifurcations
shown in Fig. 1.

To illustrate the described sequences of bifurcations,
consider the dynamics of a four-parameter family of tw
dimensional piecewise linear noninvertible mapF:

f l ,p~xn!1d~yn2xn!:

xn115pxn1
l

2 S 12
p

l D S Uxn1
1

l U2Uxn2
1

l U D1d1~yn2xn!,
~2!

f l ,p~yn!1d~xn2yn!:

yn115pyn1
l

2 S 12
p

l D S Uyn1
1

l U2Uyn2
1

l U D1d2~xn2yn!,

where l ,p,d1,2PR. Note that this system, which consists
two identical linearly coupled one-dimensional maps, is
generalization of the skew tent map. Chaotic attractors
skew tent maps have been considered in Refs.@8,9#. Two-
dimensional mapF, given by Eq.~1!, is noninvertible as
soon as one-dimensional mapf is noninvertible in the sense
that regions~points! exist that have two or more preimage
To characterize properties of system~1! we need some nota
tion from the theory of noninvertible maps~for details see
Ref. @10#!. The basin of attractionb(A) may beconnectedor
nonconnected. If A is a connected attractor, theimmediate

basinb̄(A) is defined as the widest connected componen
b(A) containingA. Inside the immediate basinb̄(A) one
can define anabsorbing area. An areaA(A) is said to be
absorbing if ~i! F„A(A)…5A(A), i.e., it is invariant with
respect toF, and ~ii ! A(A) is attracting in the following
strong sense: a neighborhoodU„A(A)… exists such that all its
points are mapped insideA in a finite number of iterations
The boundarydA(A) is made up of segments of critica
curves. Critical curvesl k ,k50,1, . . . aredefined as succes
sive imagesl k5Fk( l 0), k51,2, . . . of thecurve~s! l 0 that
play the same role in two-dimensional maps as a critical~i.e.,
extremum! point ~points! for one-dimensional maps.l 0 can
be defined as a curve of merging preimages ofF. It is clear
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that l 0 belongs to the set@(x,y); Jacobian ofF, i.e., uDFu
vanishes or does not exist#. For a considered map~1! l 0
consists of two horizontal and two vertical lines:l 05$x5
61/l , yPR%ø$xPR, y561/l %.

When (l ,p)PP5$ l .1,2 l /( l 21),p<21%, the one-
dimensional map f l ,p has two symmetrical attractor
G (2),@21,0# andG (1),@0,1#, which are cycles of 2m cha-
otic intervals~so-called 2m piece chaotic attractors!. Depend-
ing on parametersl and p, m can be any positive integer
DenotingPm to be a subregion ofP whereGm

(6) is a period-
2m cycle of chaotic intervals, the bifurcation curves for t
transitionGm

(6)→Gm11
(6) form the boundary betweenPm and

Pm11 .
For the mapFl ,p , each setA5Am

(6)5$x5yPGm
(6)% is a

one-dimensional chaotic invariant set that may or may no
an attractor in the plane (x,y). The various notions of attrac
tors involve two kinds of properties:~i! that it attracts nearby
trajectories and~ii ! that it cannot be decomposed into smal
attractors. We shall concentrate on the first property, sincA
has dense trajectories everywhere and ‘‘good’’ invari
SBR measurem ~i.e., absolutely continuous with respect
the Lebegue measure! @11#. Thus the definitions given her
should be completed by some minimality condition in ord
to be generally valid.

In comparison with the maps studied in Ref.@1# our map
~2! has the advantage that, as shown in Ref.@5#, conditions

FIG. 2. Innerl-g riddling bifurcations of map~2!. l 5&, p5
2&, ~a! d15d2520.94 locally riddled;~b! d15d2520.935 glo-
bally riddled.
e

r

t

r

for the occurrence of locally riddled basins and conditio
for attractorA to be asymptotically stable can be given an
lytically; it is therefore a useful test model for coupled ch
otic systems.

Results of Ref.@5# guide the choice of parameter value
and we can distinguish two classes ofl-g bifurcations, as
demonstrated in Figs. 2 and 3.

An example of an inner type ofl-g bifurcation is shown in
Figs. 2~a! and 2~b! for l 52p5&. As in the first type, be-
fore bifurcation @Fig. 2~a!; d15d2520.94# the basins of
both attractorsA(1) and A(2) are locally but not globally
riddled ~only attractorA(1) is shown!. After the bifurcation,
new attractorsA1 and A2 are born @Fig. 2~b!; d15d2

50.935# in the neighborhood ofA(1), and the basin ofA(1)

becomes globally riddled by the basins of these new att
tors.

In Figs. 3~a! and 3~b!, we show one example of outerl-g
bifurcation for map~2!. Before bifurcation in Fig. 3~a! ~l
51.3,p522, andd15d250.6! the basins of attractorsA(1)

and A(2) are locally riddled basins. Local riddling can b
seen in Fig. 3~b! where the points leaving the neighborhoo
(0.49,1.11)3(0.49,1.11) of the attractorA(1) are shown in
white. The boundary crisis between immediate basin of
traction b̄~A(1)) and absorbing areaA(A) is indicated in

FIG. 3. Outerl-g riddling bifurcations of map~2!. l 51.3, p5
22; ~a! d15d250.674 locally riddled;~b! d15d250.725 globally
riddled; attractorsA1 andA2 of the map~2! are~a! locally and~b!
globally riddled by each other.
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Fig. 3~a!. After a bifurcation in Fig. 3~b! ~l 51.3, p522,
tors, are riddled by each other. andd15d250.725! these
basins are globally riddled and in fact, after a bifurcati
basins of bothA(1) andA(2) attrac

In contrast to the case of smooth maps@5,7# for the piece-
wise linear maps such as map~2!, riddling bifurcation in-
duced by pitchfork or period-doubling bifurcation of a cyc
in the invariant manifold is always associated with a loc
global bifurcation~born of the new attractor inside the a
sorbing areaA(A). In this casepc5pcc and we observe a
direct transition from asymptotic stability to globally riddle
basins. This fact has significant impact on the blowout bif
cation in the system but this problem is not addressed h
@12,13#.
ke

v

-

v,

g
.

,

.

-

-
re

In this paper we identified the global phenomena that
lead to a local-global riddling bifurcation. These might b
either the breaking of an existing immediate basin bound
due to the boundary crisis with an absorbing area, permit
escape to a distant attractor, or the creation of a new att
tor~s! within the existing basin but separate from the existi
attractor; the basin~s! of the new attractor~s! riddles the basin
of the initial attractor.

We stress that the model system Eq.~2! was used only for
the purpose of illustrating the fundamental mechanism ofl-g
bifurcation. The observed properties ofl-g bifurcations seem
to be typical for a class of systems with lower-dimension
invariant manifolds, and are important for both the und
standing and control of chaos synchronization.
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