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Bifurcations from locally to globally riddled basins
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We give sufficient conditions for the occurrence of locally and globally riddled basins in coupled systems.
Two different types of bifurcations from locally to globally riddled basins are described.
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The phenomenon of riddled basifi$] has become an attractor intersects the basin with positive measure, but may
important focus in the study of nonlinear dynamics. Thesealso intersect the basin of another attractor with positive
studies are important not only from a theoretical point ofmeasure.
view, leading to better understanding of chaotic systems, but The dynamics of system(l) is described by two
from the point of view of possible applications as well. Rid- Lyapunov exponents. One of them describes the evolution on
dling typically occurs in chaotic systems with symmetric in- the invariant manifolk=y and is always positive. The sec-
variant manifolds, which are often encountered in chaos synend exponent characterizes evolution transverse to this mani-
chronization schemei@], particularly those used for secure fold and itis called transversal. If the transversal Lyapunov
communicatior{3]. In such systems riddling can lead to the €XPonent, is negative, the seA is an attractor at least in
loss of synchronization. the weak Milnor sensg4], i.e., setA is aweak Milnor at-

Consider two identical chaotic systems,.;=f(x,) and  tractorif its kgasin of attraction3(A) has positive Lebesgue
Yni1=Ff(yn), X,y €R, evolving on anasymptotically stable Measure int. o _
chaotic attractor A(the setA is an asymptotically stable ~ When the transversal Lyapunov exponent is still negative,
attractor if for any sufficiently small neighborhodd{ A) of ~ but trajectories exist in the attractérthat are transversally
A there exists a neighborhood(A) of A such that ifx  repelling,Ais a weak Milnor attractor with &cally riddled
eV(A) then f'(x) eU(A) for any ne 2" and distance Pasin,(a setA is an attractor with locally riddled basin of
p[f'(X); (A)—0,n—=]. With one-to-one coupling we &ttraction if there is a neighborhoddi of A such that given
have to consider the two-dimensional mix,y):R2—R2, ~ any neighborhoo¥ of any pointinA, there is a set of points
given by equations in VNU of positive Lebesgue measure that leatesn a
finite time).

This riddling property has a local character. It describes
behavior only in a sufficiently small neighborhood
=U(A) and it gives no information about further behavior of
the trajectories after they leak¢. In the model under con-
sideration, different situations relating to this global dynam-
ics property take place. Two of the most common of them
In this case the systems can be synchronized for some rang@# the following[5]. _ _ .
of dy,eR, i.e.,|Xp—Yyn|—0 asn— [2]. (i) Locally riddled basin.After leaving neighborhood

In the synchronized regime the dynamics of the coupled (A), almost all trajectories come back t. Then, some
System(l) is restricted to a one-dimensional invariant Sub_fraction of them, after a finite number of iterations, lealkes
spacex,=Y,, so the problem of synchronization of the cha- @gain, and so on. Dynamics of such trajectories displays non-
otic systems can be understood as a problem of stability of Eegular temporal “bursting:” a trajectory spends some time

Xn+1=F(X) +d1(yn—Xn),

D

Yn+1=F(Yn) +da(Xn—Yn).

one-dimensional chaotic attractok in two-dimensional
phase spackl,2].

We define the basin of attractigh(A) to be the set of
points whosew-limit set is contained irA. In Milnor’'s defi-

(usually a long timgnear attractoA, than leaves; then, after

some more timdusually shorx it reenters neighborhood.
(i) Globally riddled basinAfter leavingU (A), a positive

measure set of points goes to another attra@oattractors

nition [4] of an attractor, the basin of attraction need notor to infinity. This other attractor may be, for instance, an
include the whole neighborhood of the attractor; we say tha@ttracting fixed point or an attracting cycle of chaotic two-
A is a weak Milnor attractor if3(A) has positive Lebesgue dimensional sets.

measure. A riddled basiri] that has been found to be typi-

Only in the globally riddled case can the basin of attrac-

cal for a certain class of dynamical systems with a onelion B(A) have the riddled structure of a fat fractal as a

dimensional invariant subspagkke x,=y, in the example

sgb_set ofR?. In this case the neighborhood of any point

(1)] has positive Lebesgue measure but does not contain arfx,y) € 8(A) is filled by a positive Lebesgue measure set of
neighborhood of the attractor. In this case basin of attractiopoints (x,y) that are attracted to another attractor attrac-
B(A) may be a fat fractal so that any neighborhood of thetors).
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(1) A new attractor has to be born in one of the tongues
inside the absorbing ared(A).

(2) The boundary of the immediate bagkA) is broken
as a result of the boundary crisis with the absorbing area
A(A).
A(A) A new attractor is born in the repellésaddlg-attractor

@ = fﬁ bifurcation. After a riddling bifurcation a repelldsaddle

occurs due to the mechanism described in R8fand before

escape to infinity saddle

new attractor

p(AY * transformation to the stable attractor repeller can undergo
oS further bifurcations.
P>, P=p. @ When one of the above conditions is fulfilled, saypat
=p¢c, the basin of attractoA becomes globally riddled and
all trajectories leaving neighborhodd converge to another

attractor. This global bifurcation, which occurs gt p,

we call alocal-global (I-g) riddling bifurcation It is said to
FIG. 1. I-g riddling bifurcations. be inner(outey if condition (1) [Eqg. (2)] is fulfilled.

The transition from asymptotically stable attract#drto

In this paper we identify and describe the bifurcations thallobally riddled attracto’ occurs after a sequence of local
appeared after riddling bifurcation and result in the transitioryiddling bifurcations[6] and al-g riddling bifurcation of ei-
from locally to globally riddled basins, and discuss the con—ther inner or outer type. These sequences of bifurcations are
ditions for basins of attraction to be one or the other. shown in Fig. 1.

Riddling bifurcation occurs when some poi (unstable To illustrate the described sequences of bifurcations, we
fixed or periodic point embedded in the chaotic attraétdn consider the dynamics of a four-parameter family of two-
the invariant manifoliloses its transverse stability as a cou- dimensional piecewise linear noninvertible m@ap
pling parametelp passes though the critical valye=p..

Lai et al.[7] showed that the loss of transverse stability may 1 p(Xn) +A(Yn—Xp):
be induced by the collision gt= p, of two repellers , and ’
r_, located symmetrically with respect to the invariant | D
1_ —
i

riddling bifurcation I-g bifurcation

manifold, with the saddle at,. The result of this bifurcation x_,,=px,+ = Xp+ —| —

[ +d1(yn_xn)a

2

1\

Xn— I—

yn+|_ +d2(xn_yn)a

1\

was that a tongue opens gt and all preimages of,, al- 2
lowing trajectories near the invariant manifold to escape
from theU neighborhood ofA for p>p,, as shown in Fig. f1,p(Yn) +d(X,—Ypn):
1. Since preimages of, are dense in the invariant manifold,
there is an infinite number of tongues, and a set of points [ p 1
leaving theU neighborhood has a positive Lebesgue mea-Yn+1=PYnt 2 1- I_) Yoo 7
sure. Note that this scenario is for the case wherender-
goes(in transversal directiora subcritical pitchfork bifurca- : . .
tion (corresponding to multiplicator crosses that are though V\?oezcejtla,nﬁi,géizlfn}éérlrlOiiah?é;héizyoﬁtri:ﬁsvi\gmg n(’:lznsslsi ?rje
to be +1). A similar riddling mechanism works whex, eneralization of th):a skepw tent map. Chaotic attrF)aétors of
undergoes a subcritical period-doubling bifurcatignulti- 9 nap. !
. O skew tent maps have been considered in R&€]. Two-
plicator crossing is thought to be1) when the loss of trans- dimensional magF, given by Eq.(1), is noninvertible as
versal stability is induced by the collision pt=p, of only =, g y EQ.(2), L
. | .. soon as one-dimensional méaps noninvertible in the sense
the one repeller of the double period, the points of which . ; . .
: ; : ; .that regiongpointg exist that have two or more preimages.
are located symmetrically with respect to the invariant mani- : :
; - To characterize properties of systéin we need some nota-
fold with saddle atx,. Moreover, there are completely dif- . . ! :
o pr T tion from the theory of noninvertible mag$or details see
ferent riddling scenarios in the case where saddlender- . :

. X L .~ .. Ref.[10]). The basin of attractio@(A) may beconnectedr
goes a supercritical bifurcation in the transversal dlrectlonnonconnectedlf A is a connected attractor. themediate
[5,7]. We have found here that the riddling scenarios for — ~— "~ i ) '
piecewise linear maps are quite different; at the moment that@SinB(A) is defined as the widest connected component of
the transversal multiplicator of the saddlexgtcrossest+ 1 B(A) containingA. Inside the immediate basig(A) one
(or —1), there is no direct collision of the repelld® single  can define arabsorbing area An area A(A) is said to be
repelley with the saddle. Before the bifurcation, these repel-absorbing if (i) F(A(A))=A(A), i.e., it is invariant with
lers (or single repellercan exist but are located far from the respect toF, and (i) A(A) is attracting in the following
invariant manifold. The bifurcation can change each of thenstrong sense: a neighborhodd.A(A)) exists such that all its
to a saddle, or even into the attrac{éi. points are mapped insidd in a finite number of iterations.

After leavingU a trajectory may or may not be captured The boundarys.A(A) is made up of segments of critical
by another attractor. If it is not captured it returnsdoand  curves. Critical curves, ,k=0,1,... aredefined as succes-
the basin of attractoA is locally riddled We will give evi-  sive imagesl,=F¥(lo), k=1,2,... of thecurves) |, that
dence shortly that in order for a trajectory leaving the neighplay the same role in two-dimensional maps as a critical,
borhood ofU to be captured by another attractor, one of theextremum point (points for one-dimensional maps$y can
following conditions has to be fulfilled. be defined as a curve of merging preimage§ oft is clear
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FIG. 2. Innerl-g riddling bifurcations of map?2). |=v2, p= FIG. 3. Outerl-g riddling bifurcations of mafg2). |=1.3, p=
—v2, (a) d;=d,=—0.94 locally riddledyb) d;=d,=—0.935glo- —2; (a) d;=d,=0.674 locally riddledb) d,=d,=0.725 globally
bally riddled. riddled; attractorA* andA~ of the map(2) are(a) locally and(b)

globally riddled by each other.
thatl, belongs to the sdf(x,y); Jacobian ofF, i.e.,|DF|

vanishes or does not exjstFor a considered mafl) I, . . -
consists of two horizontal and two vertical lindg={x= for the occurrence of locally riddled basins and conditions

+1/, yeRIU{xeR, y=+1/} for attractorA to be asymptotically stable can be given ana-
B When (,p) eH=~fI <1 _ (I _ 1)<p<-1}, the one- Iytically; it is therefore a useful test model for coupled cha-
dimensional mapf,, has two symmetrical attractors OUC Systems. _ _
) c[-1,0 andl' ) C[0,1], which are cycles of ® cha- Results of Ref_[s] gmde the choice of parameter values,
otic intervals(so-called 2" piece chaotic attractorsDepend- ~and we can distinguish two classes lej bifurcations, as
ing on parameters and p, m can be any positive integer. démonstrated in Figs. 2and 3. o _
Denotingll, to be a subregion dfl wherel'.:") is a period- . An example of an inner type ¢fg blfgrcatlor] is shown in
2™ cycle of chaotic intervals, the bifurcation curves for the FigS- 48 and 2b) for | = —p=v2. As in the first type, be-
transition"(*)—T'(*), form the boundary betweek ,, and fore bifurcation[Fig. 2@); d;=d,=—0.94] the basins of
My both attractorsA(*) and A(™) are locally but not globally
For the mapF, . each seA=A()={x=yeT(")} is a riddled (only attractorA(™) is shown. After the bifurcation,
P m m

one-dimensional chaotic invariant set that may or may not b§€W_attractorsA, and A, are (E?m [Fig. 2b); df(%

an attractor in the plane(y). The various notions of attrac- =0.935 in the neighborhood oA™™’, and the basin oA

tors involve two kinds of propertiegi) that it attracts nearby P€comes globally riddled by the basins of these new attrac-
trajectories andii) that it cannot be decomposed into smallertorS:
attractors. We shall concentrate on the first property, skice " Figs. 3@ and 3b), we show one example of outeg
has dense trajectories everywhere and “good” invarianfifurcation for map(2). Before bifurcation in Fig. &) JSI
SBR measure: (i.e., absolutely continuous with respect to = 1-3,P=—2, andd; =d,=0.6) the basins of e}ttret_ctov!s( )
the Lebegue measurgll]. Thus the definitions given here and AC™) are locally riddled basins. Local riddling can be

should be completed by some minimality condition in orderS€en in Fig. &) where the points leaving the neighborhood
to be generally valid. (0.49,1.11) (0.49,1.11) of the attractoh!™) are shown in

In Comparison Wlth the maps studied in RE{] our map white. The boundary crisis between immediate basin of at-
(2) has the advantage that, as shown in R&f. conditions  traction B(A(")) and absorbing areal(A) is indicated in
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Fig. 3(@). After a bifurcation in Fig. &) (1=1.3, p=-2, In this paper we identified the global phenomena that can
tors, are riddled by each other. and=d,=0.725 these lead to a local-global riddling bifurcation. These might be
basins are globally riddled and in fact, after a bifurcationeither the breaking of an existing immediate basin boundary
basins of botA(*) and A(™) attrac due to the boundary crisis with an absorbing area, permitting
In contrast to the case of smooth m4ps7] for the piece- escape to a distant attractor, or the creation of a new attrac-
wise linear maps such as ma&p), riddling bifurcation in-  tor(s) within the existing basin but separate from the existing
duced by pitchfork or period-doubling bifurcation of a cycle attractor; the basis) of the new attractds) riddles the basin
in the invariant manifold is always associated with a local-of the initial attractor.
global bifurcation(born of the new attractor inside the ab-  We stress that the model system E2).was used only for
sorbing aread(A). In this casep.=p.. and we observe a the purpose of illustrating the fundamental mechanisrgpf
direct transition from asymptotic stability to globally riddled bifurcation. The observed propertiesleaf bifurcations seem
basins. This fact has significant impact on the blowout bifur-to be typical for a class of systems with lower-dimensional
cation in the system but this problem is not addressed hen@variant manifolds, and are important for both the under-
[12,13. standing and control of chaos synchronization.
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