PHYSICAL REVIEW E VOLUME 58, NUMBER 4 OCTOBER 1998

Multiple choice bifurcations as a source of unpredictability in dynamical systems
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Most of the nonlinear systems are characterized by the coexistence of at least two attractors in some regions
of the phase space. In this Brief Report, we present an example of a system which exhibits types of bifurcations
in which multiple coexisting attractors are created or destroyed simultaneously. The main feature of these
bifurcations is that they lead to unpredictable behavior of trajectories when a system parameter is slowly varied
through the bifurcation poin{.S1063-651X98)14010-2
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A great number of dynamical systems with practical im'f|,p(Yn)+d(Xn—Yn)1
portance is characterized by the coexistence of more than
two attractors in some regions of parameter space. Nonlinear _ | p 1
electrical circuits[1], mechanical buckled beam problems ~ Yn+1=P¥n* 3 =7 Yo T
[2], and geophysical mode]8] are just simple examples of
such systems. Multiple coexisting attractors are common in +d(X,—Yn), (1)
coupled system$4,5]. For example, if6] the problem of
synchronization of two identical chaotic systems Origi”a"ywherel,p,deR. Note that this system, which consists of
evolving on different coexisting attractors was cons_idered. Itwo identical linearly coupled one-dimensional maps, is the
has been found that such systems can synchronize on OR@neralization of the skew tent map. Chaotic attractors of
attractor, but th_e answer to the question, “On which one?”g o tent maps have been consideref5in A map (1) is an
cannot be predicted. _ _ example of piecewise smooth systems that are common in
In this Brief Report, we study the bifurcations as the re-p,, nper of practical applicatiorfg].
sult of which some attractors are destroyed and the system aq the first example of multiple choice bifurcation con-
evolution has to switch to one of at least two coexistinggjqer map(1) for | =1.5, p=—2.4. For a smaltl it has four
attractors. We call thenmultiple choice bifurcationsand coexisting attractorsA, ,,B,C shown in Fig. 2a (d
present examples that such bifurcations are common in tWo= 51 - after a bifurcation two of them, andA, disappear
d|men5|on_al PIECEwISe _Ilnear systems. ) .. and trajectories evolving on them go to one of the surviving
Our main result in this paper is that multiple choice bifur- attractors or C, shown in Fig. 2b) (d=0.25). As the result
cations are charaqterizgd by a new type of sens'itivity to nOiSSf bifurcation tr;e attractorg\; andA, are transformed into
that can be described n the' following wésee Fig. ] Let . the saddle periodic orbits with the stablalong a linex
the system under consideration be affected by the small noise —y) and unstable manifolds on the boundary of the basins
ox(t) (for all t|ox(t)| is bound by some small yalue), and of attraction of attractor® and C, as shown in Fig. @).
assume that.the ;ystem parameten; varying slowly Infinitely small random perturbation into blugellow) re-
through the bifurcation point. Before bifurcation the systemgion direct the trajectory towards attrac®(C)
trajectory evolves on a particular attractd(or due to noise In the second example let us take: — 2.4 d=0 4. For
in its small neighborhood After a bifurcation at least two |<ly=1 map(1) has a single attractor=y'=’0 [Fié .3(a)
attractorsB andC exist and attractof loses its stabilityit is I=0098] In the bifurcation afl~ this attractor is deétro ed
transformed into an unstable set located on the boundary (%\];vo .chéotic attractors8 and OC shown in Fig. &) 3(/| !
the basins of attraction of attractoBsand C), as shown in —1.02 b d th tem traiect fA?ﬁ :
Fig. 1. We show that the question “After the bifurcation, on ™ ) are born, and the system trajectory frérhas to go
which attractor does the trajectory evolve?” has no answer,

even for infinitely small noise leved. /é’(B)
As an example, consider the dynamics of a four-
parameter family of two-dimensional piecewise linear non-

invertible mapF:

> A=
fl,p(xn)+d(yn_xn): /é)(jq)

1-9) ) e,

+d(Yn—Xn), FIG. 1. Multiple choice bifurcation.
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FIG. 2. (Colon Attractors of map(1l) and its basins of attractioh=1.5, p=—2.4; (a) before multiple choice bifurcatiod=0.21, (b)
after bifurcationd=0.24.

to eitherB or C. Before the bifurcation the system trajectory jectories starting from the same initial conditions with the

goes to the attractor along the lime=y and can reach it in same level of noisgwith the same accuracy of numerical

two different ways: through positive and negative values ofcalculation$ can reach different attractors for slightly differ-

x=y. Initial conditions determining positive and negative ent system parameters. Multiple choice bifurcations have

route are shown in Fig.(d) in blue and yellow, respectively. been observed in our prevoius studies on two-dimensional

After a bifurcation attractoA is transformed into a periodic piecewise linear systeni§] and in the number of papers on

saddle with stablg¢along a linex=—y) and unstabléalong  the dynamics of Chua’s circuitl], but up until now the

a line x=y) manifolds. Trajectories originating from the uncertainty that they produced has not been pointed out.

neighborhood of this saddle approach attra@ar C along As the result of multiple choice bifurcation when comput-

a linex=y. Initial conditions which determined the positive ing the bifurcation diagrams by following the trajectory on

and negative route to attractdrnow define basins of attrac- attractorA; (or A,) of the first example or on attractdr in

tion of attractorsB and C. Again the small random pertur- the second one in the presence of even very small noise, one

bation at the bifurcation determines the future attractor of thean get different results for different noise realizations. This

system trajectory. dynamical undecibility connected with multiple choice bifur-
Multiple choice bifurcations are common for the consid- cations cannot be avoided without appropriate control of the

ered systen(l) as they have been observed for positive measystem at the bifurcatio(or slightly before. This control is

sure set of system parametgrd,d. We found that the tra- based on the understanding of system dynamics and in most
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FIG. 3. (Colon Attractors of map(1) and its basins of attractioh=1.5,d= —0.95; (a) before multiple choice bifurcatioh=0.98, (b)
after bifurcationl = 1.02.
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systems it can be easily implemented. In our examples it wilbrigin of uncertainty based on the existence of fractal basin
be based on the deliberate shifting of the system trajectorpoundaries in the region of the phase space where the de-
before bifurcation to the blue or yellow region, depending onstroyed attractoA was located, is somewhat different from
which attractorB or C is desired after bifurcation. our examples where basin boundaries are smooth.

It should be noted here that the same type of uncertainty To summarize, we have shown that the bifurcations to
occurs in at least two other caség:whenA survives bifur-  multiple attractors in the system with coexisting attractors
cation but the basins of attractige(B) and 8(C) of new leads to unpredictable behavior of trajectories as system pa-
attractorsA andB are infinitely close to the attractéy, asin ~ rameter is slowly varied through its bifurcation value. This
the case of the transition to riddled basjdg; (ii) when a  dynamical undecidability occurs as the attractor descroyed in
periodic attractorA is destroyed in saddle-node bifurcation bifurcation is located on the basin boundary of attractor are
and a saddle is located on a fractal basin boundary of othdyorn (or survived in bifurcation. The described phenomenon
two attractorsB andC [8]. In both of these cases noiseo =~ seems to be a characteristic of two-dimensional piecewise
matter how small determines the destination of trajectory linear systems. Recently similar results were obtained by
that evolved on attractoA before bifurcation. However the Duttaet al.[9].
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