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Abstract

A mechanism for riddling bifurcations in the system of coupled piecewise linear maps is described. We give sufficient
conditions for the occurrence of locally and globally riddled basins based on the properties of absorbing areas of the chaotic
attractors on the invariant manifold. It is also shown that riddled basins are preserved upon bifurcation of the chaotic attractors
as long as the attractor after bifurcation is located in the absorbing area of the attractor before bifurcation. ©1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Recently, riddled basins [1-5] have been found in
a great number of systems and become an important
study area in nonlinear dynamics. Riddling typically
occurs in chaotic systems with invariant manifolds, as
for example in chaos synchronization schemes [6-18].
In such systems riddling can lead either to the temporal
(local riddling) or permanent (global riddling) loss of
synchronization.

Consider two identical chaotic systems, x,.| =
fxy) and yup1 = flyy), x,y € R, evolving on
an asymptotically stable attractor A (the set A is an
asymptotically stable attractor if for any sufficiently
small neighborhood U(A) of A there exists a neighbor-
hood V(A) of A such that if x € V(A), then f"(x) €
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U(A) for any n € Z* and distance p(f"(x); A) —
0,n — o00). With one-to-one coupling the map be-
comes a two-dimensional map f(x,y) : R?> — R?
given by equations

Xng1 = flxn) +d, (Yn ~ xn),
Ynt+1 = f(¥n) + da(xy — yn).

In this case the system can be synchronized for some
rangesof dj > e R,ie., | x,—y, | > 0asn — oo and
its limiting dynamics is restricted to a one-dimensional
invariant subspace x, = y, [1,6].

We define the basin of attraction B(A) to the set of
points whose w-limit set is contained in A. In Mil-
nor’s definition [19] of an attractor, the basin of at-
traction need not include the whole neighborhood of
the attractor, we say that A is a weak Milnor attractor
if B(A) has positive Lebesgue measure. If the basin
B(A) is riddled, it has positive Lebesgue measure but
does not contain any neighborhood of the attractor A

)
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(A is a weak Milnor attractor [19]). In this case the
basin of attraction B(A) may be a fat fractal so that
any neighborhood of the attractor intersects the basin
with positive measure, but may also intersect the basin
of another attractor with positive measure.

The dynamics of the system (1) is described by two
Lyapunov exponents. One of them describes the evol-
ution on the invariant manifold x = y and is always
positive. The second exponent characterizes evolution
transverse to this manifold and it is called transversal.
If the transversal Lyapunov exponent, X | is negative,
the set A is an attractor, at least in the weak Milnor
sense [4], i.e., the set A is a weak Milnor attractor
if its basin of attraction B(A) has positive Lebesgue
measure in R2.

When the transversal Lyapunov exponent is nega-
tive, but there exist trajectories in the attractor A which
are transversally repelling, A is a weak Milnor attrac-
tor with a locally riddled basin (a set A is an attractor
with a locally riddled basin of attraction, if there is a
neighborhood U of A such that given any neighbor-
hood V of any point in A, there is a set of points in
V N U of positive Lebesgue measure which leaves U
in a finite time).

This riddling property has a local character. It
describes behavior only in a sufficiently small neigh-
borhood U/ = U(A) and it gives no information about
further behavior of the trajectories after they leave
U. Two different classes of riddled basins have been
defined [29,33]. In the case of a locally riddled basin
almost all (in the sense of measure) trajectories leav-
ing the neighborhood U(A), come back to U. Then,
some fraction of them, after a finite number of itera-
tions, leave U again, and so on. The dynamics of such
trajectories displays non-regular, temporal “bursting”:
a trajectory spends some time (usually long) near
attractor A until it goes away; then, after some other
time (usually short) it re-enters the neighborhood U.
If the basin of attractor A is a globally riddled basin,
a positive measure set of points after leaving U(A),
goes to another attractor (or attractors) or to infinity.

Only in the globally riddied case can the basin of
attraction B(A) have the riddled structure of a fat frac-
tal as a subset of R?. In this case the neighborhood of
any point (X, y) € B(A) is filled by a positive Lebesgue
measure set of points (x, y) which are attracted to
another attractor (attractors).

In this paper we identify and describe the special
features of bifurcations leading to locally and globally

riddled basins in the system of coupled, piecewise lin-
ear maps. Special attention is given to the differences
between these bifurcations and equivalent bifurcations
in coupled, smooth systems. Additionally, we consider
the influence of the bifurcation of a chaotic attractor
A on the structure of its basin of attraction.

The outline of this paper is as follows. In Section 2
we describe the system under consideration and recall
its fundamental properties. Two different bifurcation
scenarios leading to globally riddled basins are iden-
tified and studied in Section 3. Section 4 investigates
the influence of the bifurcations of the attractors lo-
cated in the invariant manifold on the structure of its
basins of attraction. Finally, we summarize our results
in Section 5.

2. A model

In this paper we identify and describe riddling bifur-
cations of a four-parameter family of two-dimensional,
piecewise linear, non-invertible map:

F= f/.p(xn) +d(yn — xp),

{ p 1 1
Xn+1 -Pxn+“i(] - —I')(xn +'[" - | Xp — 'I'D
+di (Yo — Xp)s
F=fiplyn) + d(xy ~ yn),
l p 1 1
Yn+1 '—p)’n’*'i (1 _7) ( )n‘*“il" Yn _‘I‘D
+da(xp —¥a), (2)

where [, p,di2» € R. Note that this system, which
consists of two identical linearly coupled one-
dimensional maps, is the generalization of the skew
tent map. Chaotic attractors of skew tent maps have
been considered in [23-27]. The two-dimensional
map F, given by Eq. (1), is non-invertible as long
as the one-dimensional map f is non-invertible in
the sense that there exist regions (points) having two
or four preimages. To characterize the properties of
system (1) we need some notation from the theory
of non-invertible maps (for details see [30,34]). If A
is a connected attractor, the immediate basin B(A) is
defined as the widest connected component of B(A)
containing A. Inside the immediate basin B(A) one
can define an absorbing area. An area A(A) is said
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to be absorbing if (i) F(A(A)) = A(A), ie., it is in-
variant with respect to F, (ii) A(A) is attracting in the
following strong sense: there exists a neighborhood
U(A(A)) such that all its points are mapped inside A
in a finite number of iterations. The boundary 5.4(A)
is made up of segments of critical curves. Critical
curves Iy, k =0, 1, ..., are defined as successive im-
ages Iy = Fk(l()), k=1,2,...,of the curve (curves)
Io which plays the same role in two-dimensional
maps as a critical (i.e., extremum) point (points) for
one-dimensional maps. /g can be defined as a curve
of merging preimages of F [30]. It is clear that Iy
belongs to the set {(x, y): Jacobian of F, i.e., |DF|
vanishes or does not exist}. For the considered map
F, Iy consists of two horizontal and two vertical lines:
b={x==x21/yeR}U{xeR,y=2(1/D}. It
should be mentioned here that the concept of absorb-
ing areas is related to the idea of essential basins [36]
restricted to compact sets.

We now return to the two-dimensional map of the
plane (x, y) into itself given by Eq. (2). When (I, p) €
n={=>1-1/d-1 < p < —1} the one-
dimensional map f , has two symmetrical attractors
=) c[—1,0]and 'Y C [0, 1], which are cycle of
2" chaotic intervals (the so-called 2" -piece chaotic at-
tractors). Depending on the parameters / and p, m can
be any positive integer. Denoting 1, to be a subregion
of IT where F,,(,i) is a period-2" cycle of chaotic inter-
vals, the bifurcation curves for the transition F,Li’ —

Fiﬁ)l form the boundary between IT,, and IT,,. .

For the map F; ,, each set A = A,(ni) ={x=y¢€
F,Li)} is a one-dimensional chaotic invariant set which
may or may not be an attractor in the plane (x, y).
The various notions of attractors involve two kinds of
properties: (i) that it attracts nearby trajectories and
(11) that it cannot be decomposed into smaller attrac-
tors. We shall concentrate on the first property, since
A is filled with dense trajectories and ‘good’ invariant
SBR measure ¢ which is absolutely continuous with
respect to Lebesgue measure [35]. Thus, the defini-
tions given here should be completed by some mini-
mality condition in order to be generally valid.

In comparison with the maps studied in [1-5] our
map (2) has the advantage that, as shown in [28,29],
conditions for the occurrence of locally riddled basins
and conditions for the attractor A to be asymptotically
stable can be given analytically, it is therefore a useful
test model for coupled chaotic systems.

3. Necessary conditions for riddling bifurcations

Riddling bifurcation occurs when some point x,
(unstable fixed or periodic point embedded in the
chaotic attractor A in the invariant manifold) loses its
transverse stability as a coupling parameter p passes
through the critical value p = p; [20-22]. Lai et
al. [22] showed that the loss of transverse stability
may be induced by the collision at p = p; of two
repellers r.. and r_, located symmetrically with re-
spect to the invariant manifold, with the saddle at x;.
As the result of this bifurcation a tongue opens at xp
and all preimages of x;, allowing trajectories near
the invariant manifold to escape from the U neigh-
borhood of A for p > p.. As preimages of x, are
dense in the invariant manifold there is an infinite
number of tongues, and a set of points leaving the U
neighborhood has a positive Lebesgue measure. Note
that this scenario is for the case when xp, undergoes
(in transversal direction) a subcritical pitchfork bifur-
cation (corresponding multiplicator crosses through
+1). A similar riddling mechanism works when x,
undergoes a subcritical period-doubling bifurcation
(multiplicator crossing through —1). In this case the
loss of transversal stability is induced by the collision
at p = p. of the only one repeller r of the double
period, points of which are located symmetrically
with respect to the invariant manifold, with the saddle
at xp. Different riddling scenarios occur in the case
when saddle x;, undergoes a supercritical bifurcation
in the transversal direction [31-33].

We have found here that the riddling scenarios
for the piecewise linear map (2) are quite different:
at the moment when the transversal multiplicator of
the saddle at xj, crosses +1 (or —1) there is not a
direct collision of the repellers (or one repeller) with
the saddle. Before the bifurcation, these repellers
(or one repeller) can exist but are located far from
the invariant manifold. The bifurcation can change
each of them into a saddle, or even into the attractor
[23,25].

After leaving U a typical trajectory may or may not
be captured by another attractor. If it is not captured
it returns to U and the basin of attractor A is locally
riddled. We will shortly give evidence that in order for
a trajectory of the system (2) leaving the neighborhood
of U to be captured by another attractor, one of the
following conditions has to be fulfilled:
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Fig. 1. Scenarios of riddling bifurcations in piecewise linear systems.

() The boundary of the immediate basin B(A) is
broken as the result of the boundary crisis with
the absorbing area A(A),

(i) A new attractor has to be born inside the absorb-
ing area A(A) in the moment of riddling, i.e., at
P = Pc.

In the first case after a riddling bifurcation in which
a point x,, loses its transverse stability we observe tran-
sition to locally riddled basins. Globally riddled basins
can be established after boundary crisis of absorbing
area A(A) and the immediate basin of attraction B(A).
This global bifurcation, which occurs at p = p., we
call a I-g (local-global) riddling bifurcation and this
transition to globally riddled basins is called the outer
one.

In the second scenario the globally riddled basins
are established as the result of a riddling bifurcation
which in this case gives rise to the birth of the new
attractor (attractors). This transition will be called the
inner one as it occurs inside the basin B(A). The new
attractor (attractors) born as the result of this bifur-
cation will later lose its stability due to the bound-
ary crisis with its basin boundary, and we observe
the transition from globally to locally riddled basins
(g-1 bifurcation). Further variations of the parame-
ter d can result in l-g bifurcation as in the previous
scenario.

The bifurcations leading from an asymptotically sta-
ble attractor A to a globally riddled attractor are shown
in Fig. 1.

The described inner transition is characteristic for
piecewise linear maps. In the case of smooth maps
the transition from asymptotic stability of the synchro-
nized chaotic attractors to globally riddled basins leads
through the locally riddled regime [33].

Results of [28,29] guide the choice of parameter
values, and we can illustrate two types of riddling
bifurcations in Figs. 2 and 3 for [ = —p = 1.55.

An example of an inner type of l-g bifurcation is
shown in Fig. 2(a)-(c). Before the bifurcation (Fig.
2(a), d; = d» = —0.92), both attractors A and A~
are asymptotically stable. At the bifurcation, d; =
dr = —0.923, two new attractors A(C;) and A(l}) are

born inside the absorbing areas of the attractors A+
and A" and the basins of these attractors become
globally riddled as can be seen in Fig. 2(b) (d| = d» =
—0.925) and at the enlargement in Fig. 2(c). At d; =
dy = —0.95, attractors A(IJ“Z’ and AS}) become unsta-
ble (they are transformed into chaotic saddles) due to
the boundary crisis with its basin boundary shown in
Fig. 2(d) (d| = dy = —0.948) and we observe transi-
tion from globally to locally riddled basins (g1 bifur-
cation). In the locally riddled regime chaotic saddles
exist inside absorbing areas A(A‘™) and A(A 7). An
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Fig. 2. Inner l-g riddling bifurcations of map (2); / = 1.55, p = —1.55: (a) d) = dy = —0.92, attractor A" is asymptotically stable:
(b) di = dy = ~0.925, attractor A" is globally riddled by newly born attractors Aﬁ_,’; (c) enlargement of globally riddled basin for
d) = d» = —~0.94; (d) a moment shortly below g-l bifurcation, d; = d> = —~0.948; (e) chaotic saddle for d| = d» = —0.95.
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Fig. 3. Outer l-g riddling bifurcations of map 2;

I =155p=~155 (a) d) = d» = —0.965, attractor A'*! is
locally riddled: and (b), (¢) d| = d» = —0.980, attractor A" is
globally riddled by an attractor at infinity.

1.65

asymptotic stability

-2 d=d pdy -0.9

Fig. 4. Boundaries of riddling bifurcations in { = —p versus
d = dy + dy plane; black and grey areas indicate, respectively,
globally and locally riddled basins.

example of these non-attracting chaotic sets calculated
by the proper interior maximum (PIM) triple proce-
dure [37] is shown in Fig. 2(e). System trajectories are
leaving the neighborhoods of attractors A and A~
through the mushroom-shaped phase-space regions to
spend some time on the chaotic saddles and then they
are returning towards attractors A" and A,

In Fig. 3(a) and (b) we show one example of outer
l-g bifurcation for map (2). Before the bifurcation in
Fig. 3(a) (d) = d2 = —0.965), the basins of attractors
A" and A7) are locally riddled basins (for this case
the chaotic saddles similar to that of Fig. 2(e) can be
found inside the absorbing areas). The boundary crisis
between immediate basin of attraction B(A(‘”) and
absorbing area A(A™) is indicated in Fig. 3(a). After
a bifurcation in Fig. 3(b) and (¢) (d) = d3 = —0.98),
these basins of attractors A and A(~) are globally
riddled by the attractor at infinity.

In both types of bifurcations leading to globally rid-
dled basins the important role is played by the absorb-
ing areas A(A™)) and A(A'™). As it was shown in
Section 2, this area can be estimated numerically by
iteration of lines /o. Fig. 4 shows the boundaries of
riddling bifurcations in / = —p versus d = d| + >
plane. The boundaries between the areas of local and
global riddling have been calculated either from the
condition of boundary crisis of A(A*) and A(A")
with immediate basin boundary B(A‘")) and B(A)
(numerically the lines [;, I, 3, and {4 are checked to
see if they are attracted to A" and A‘™’) or by the
birth of new attractor condition (numerically the area
between lines [y, [», [3, and {4 is checked to see if it
is attracted to A" and A‘™). Region of asymptotic
stability was calculated from the analytical conditions
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Fig. 5. Bifurcation diagram of the attractor A® : p = —/2,

dy = dy = —-0.935.

given in [29]. Riddling bifurcations were found to be
robust in the considered parameter space.

4. Influence of the bifurcations of chaotic
attractor located at the invariant manifeld on the
structure of basins of attraction

Chaotic attractors located at the invariant manifold
x = v can undergo period-doubling bifurcations giv-
ing transition from 2*-piece chaotic attractor to 2¢+!-
piece chaotic attractor. In this section we analyze the
influence of the bifurcations of attractors A" and
A" on the structure of their basins of attraction.

In Fig. 5 we present the bifurcation diagram of the
A for p = —/2,d; = dy = —0.935, where !
is taken as the bifurcation parameter. At/ = V2 at-
tractor A‘*) bifurcates from one-piece to two-piece
chaotic attractor. With further decrease of / the two-
piece chaotic attractor becomes smaller and smaller
and finally is replaced by the x = 0 fixed point attrac-
tor (attractor A~ undergoes the same bifurcations).

The structure of globally riddled basins of attraction
of attractors A" and A~ is preseved as long as these
attractors are chaotic as can be seen in Fig. 6(a)—(c).
In Fig. 6(a) we present the globally riddled basin of
attraction of the one-piece chaotic attractor A (I =

x 1.001

Fig. 6. Globally riddled basins of attractor A : p = —/2,
dy =dy = —0.935; (a) I = V2, (b) 1 = 1.200, {c) I = 1.006.

V2). Similar structure is visible after the bifurcation
to the two-piece chaotic attractor in Fig. 6(b) (/ = 1.2)
and (c) (! = 1.006) shortly before A" bifurcates to
x = 0 attractor.
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Generally, our analysis shows that the structures of
globally and locally riddled basins are preserved with
bifurcations of A™ — A’ and A —» A7) at-
tractors if the attractors after bifurcation, A" and
A7) are located in the absorbing areas A(A™) and
A(A of attractors AT and A before the bifur-
cation.

5. Conclusions

In this paper we identified the global phenomena
which lead to the creation of riddled basins in cou-
pled piecewise linear systems. These might be either a
breaking of an existing immediate basin boundary due
to the boundary crisis with an absorbing area, permit-
ting an escape to a distant attractor, or the creation of
a new attractor(s) within the existing absorbing area in
the moment of riddling bifurcation; the basin(s) of the
new attractor(s) riddle the basin of the initial attractor.

In the second case we observed a direct transition
from asymptotic stability of attractors in the invariant
manifold to the global riddling of their basins. This
scenario of the riddling bifurcation giving instant rise
to the birth of the new attractor(s) inside the absorbing
area is characteristic for piecewise linear maps.

Additionally, we showed that the globally (locally)
riddled structure of basins of attraction of chaotic at-
tractors located at the invariant manifold is preserved
with bifurcations of these attractors as long as attrac-
tors which occur as the result of bifurcation are located
inside the absorbing area of attractors before bifurca-
tion.

We stress that the model system equation (2) was
used only for the purpose of illustrating the funda-
mental mechanism of l-g bifurcation. The observed
properties of ]-g bifurcations seem to be typical for
a class of systems with lower-dimensional invariant
manifolds, and are important both for the understand-
ing and control of chaos synchronization.
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