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Abstract

ŽWe show that in the weakly non-identical coupled systems, the loss of synchronization the destruction of a chaotic
.attractor located in the vicinity of the invariant subspace of identical systems can be initiated by the smooth shift of one of

these orbits out of the chaotic attractor. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 05.45.qb

It is well-known that coupled identical systems
can demonstrate exactly the same chaotic evolution
w x1–9 , i.e. all subsystems do exactly the same thing
at the same time. This cooperative behavior is de-

wfined as one kind of the chaos synchronization 10–
x14 and is important in the studies of continuous

systems with uniform movement, neurons models,
and coupled lasers, and electrical circuits. In the
synchronization regime the chaotic attractor of two

Žsystems number of systems two was taken to sim-
plify the notation, but the discussion is valid for any

. Ž . Ž .number of them x s f x and y s f ynq1 n nq1 n

coupled together is located in the symmetric sub-
space xsy of the phase space of coupled systems.
When the system exits from the synchronization
region, the chaotic state loses its transversal stability
and is destroyed in a blowout bifurcation. As a rule,
the intermittency and the very complex structure of

Žthe attractor basin the so-called, bubbling and rid-
.dling transitions accompany the loss of stability of

wchaotic attractor located in symmetric subspace 15–
x22 .
In the studies of coupled identical subsystems it

has been found out that the loss of the chaotic
synchronization is immediately connected with bifur-
cations of saddle periodic orbits embedded in the

w xchaotic attractor 16,23–26 . For instance, in the
w xwork 25 it has been demonstrated that the loss of

phase synchronization begins with a saddle-node bi-
furcation of the unstable periodic trajectory embed-
ded in the chaotic attractor. As a result of it, a

Žspecific intermittency regime Eyelet Intermittency
w x. w x25 appears. In the work 23 it has been found out
that a subcritical pitchfork bifurcation of the saddle
point embedded in the symmetric chaotic attractor
induces riddling transition.

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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w xIn the work 26 we have investigated the bifurca-
tion mechanism of the loss of stability of syn-
chronous chaotic motions in coupled logistic maps:

x sl yx 2 qe x 2 yy2 ,Ž .nq1 1 n 1 n n

y sl yy2 qe y2 yx 2 . 1Ž .Ž .nq1 2 n 2 n n

Ž x , y are dynamical variables, l are controllingn n 1,2

parameters of partial systems, e are coefficients of1,2
.coupling. It has been shown that in the symmetric

Ž .case l sl sl,e se se when the system ap-1 2 1 2

proaches the point of blowout bifurcation, the se-
quence of soft bifurcations of the certain family of

N 0 Ž Nsaddle orbits 2 C where 2 is the orbit period,
.Ns0,1,2, . . . takes place. This family of saddle

orbits forms the skeleton of the synchronized chaotic
attractor A0. The loss of stability of the symmetric
chaotic set A0 in the normal direction begins with
the bifurcation of the saddle point C 0 which induces
the bubbling transition in the system. The saddle
periodic orbit resulting from the bifurcation of the
point C 0, and its unstable manifolds bound the re-
gion near the symmetric subspace from which a
trajectory cannot leave. The bifurcation of this saddle
periodic orbit located outside the symmetric sub-
space induces the riddling transition in the system.
Bifurcations of saddle orbits with higher periods
develop riddling phenomenon and lead to blowout
bifurcation.

As the identity of systems is the non-generic case
Ž .impossible to be implemented in practical systems ,
from the point of view of experimental systems it is
very important to investigate the influence of non-
identity of coupled systems on bifurcation mecha-
nism of the destruction of synchronous chaotic mo-
tions. Some aspects linked with influence of the

wsystem asymmetry have been discussed in works 18,
x23 .
In this letter, we will show that when the coupled

systems are different, even slightly, the mechanism
of the loss of chaos synchronization which leads to
the destruction of the chaotic attractor located in the
vicinity of x sy subspace can be significantlyn n

different from that identified in the case of ideal
subsystems. We will give evidence that this mecha-
nism can be initiated without any bifurcation by the
continuous movement of one of the unstable periodic
orbit out of the vicinity of x sy subspace.n n

We consider the non-identity effect on dynamics
Ž .of the system 1 at e se se with the detuning1 2

Žbetween parameters l : l sdPl,l sl where d1,2 1 2
.is the non-identity parameter . It should be noted

here that the same results can be obtained when one
considers l sl and e /e .1 2 1 2

In the identical case all unstable periodic orbits
embedded in the chaotic attractor are transversely
stable so the synchronized state is normally hyper-
bolic and hence it will persist under small symmetry
breaking perturbations. Generally one can expect a
loss of chaos synchronization due to the chaotic
attractor deforming away from the synchronized state
in continuous fashion. However, our investigations
of bifurcations of unstable periodic trajectories have
shown that the mechanism of the loss of the chaos
synchronization can be different from these expecta-
tions as well as from the mechanism described for
the identical case. We give evidence that in the
weakly non-identical systems the initial stage of the
loss of synchronization can go softly without any
bifurcations of saddle periodic orbits embedded in
the chaotic attractor, and it is due to the smooth shift
of one saddle periodic orbits in the normal direction
out of the chaotic attractor in the vicinity of x syn n

subspace. Finally, the bifurcation of this orbit into
the periodic attractor destroys the chaotic attractor in
the vicinity of x sy subspace.n n

Ž .The detuning between parameters d/1 de-
Ž .stroys the symmetry of the system 1 . However, in

slightly non-identical subsystems the oscillation
regimes are modified in the weak degree. We shall

<determine the chaotic regime as synchronous, if xn
<yy -D, where D is the given small value withn

respect to the intensity of the chaotic oscillation. The
range of acceptable values of D depends on the
nature of the considered system and has to be esti-
mated experimentally. In this sense the chaotic at-
tractor A0 corresponds to the regime of synchroniza-
tion, and it is located in the vicinity of the subspace
x sy of the whole phase space of the system.n n

Let us investigate the oscillation regimes in the
Ž .system 1 depending on the coupling coefficient e

at ls1.56 and consider ds0.995 and Ds0.01.
At this value of l the individual system demon-

strates the regime of the one-band chaotic attractor
for the whole range of considered values of e . Our
numerical results showed that nearly synchronous
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motions take place in the interval of values e from
0.2 to 0.55 approximately where the coupled systems
demonstrate almost identical behavior. The differ-
ence between dynamical variables does not exceed
the given threshold Ds0.01. When e leaves the
mentioned interval, modulus of the difference
< <x yy increases.n n

The considered chaotic attractor A0, which corre-
sponds to the regime of the chaos synchronization, is
formed as a result of the cascade of period-doubling
bifurcations of orbits 2 NC 0 located in the vicinity of
x sy subspace. At ls1.56 in the mentionedn n

w xe-interval 0.2,0.55 these periodic orbits are saddle
ones. They are embedded in A0 and determine the
skeleton of the attractor. Fig. 1 shows saddle orbits
C 0, 2C 0 and 4C 0 at the value es0.22 which is
among the region of the chaos synchronization. As
we can see they are located on the line which almost
coincides with the symmetric subspace in the case of
identical systems.

w xAs in the case of identical systems 26 the behav-
ior of the saddle point C 0 embedded in the chaotic
attractor A0 determines the initial stage of the loss of
the chaos synchronization, but in both cases this
behaviour can be completely different.

With the decrease of l we observe the same
mechanism of the loss of chaos synchronization as

w x Ždetermined in 26 for identical systems for details
w x.see 27 . A completely new mechanism is observed

with the increase of the coupling coefficient. When e

Fig. 1. Chaotic attractor A and unstable periodic orbits embed-0
0 0 Ž .ded in the chaotic set A : the repeller C ( , the saddles

0 Ž . 0Ž .2C I ; 4C n ; ls1.56, e s0.22.

Fig. 2. The initial stage of the loss of chaos synchronization
0 Ž .mechanism; the repeller C ( leaves the A attractor located in0

0 Ž . 0Ž .the vicinity of x s y subspace, the saddles 2C I ; 4C n ,n n

e s0.790.

exceeds the value 0.55 the saddle point C 0 exits
from the vicinity of x sy subspace but the othern n

saddle periodic orbits stay there as their coordinates
are almost not changed. As the result of it, the
attractor skeleton is deformed and protrudes from the
vicinity of x sy subspace and chaotic attractor A0

n n

as seen in Fig. 2 for es0.79. Thus, with the in-
crease of the coupling the loss of the chaos synchro-
nization does not start with the bifurcation of the
saddle point C 0, but arises from the displacement of
this unstable fixed point which leaves the vicinity of

0 Ž . 0 Ž .Fig. 3. Periodic attractors: C ; v , C ; = and unstable periodic2
0 Ž . 0 Ž . 0 Ž .orbits: the repellers C q , 2C I ; 4C n and saddle orbits1

with doubled period located in the neighbourhoods of periodic
attractors and repellers after destruction of the chaotic attractor
A ; ls1.56, e s0.857.0
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w xx sy subspace. For eg 0.8069,0.8448 one ob-n n

serves various bifurcations of unstable periodic or-
w xbits embedded in the chaotic attractor A 27 . The0

saddle periodic orbits 2C 0,4C 0,8C 0,16C 0 undergo
the period-doubling bifurcation, respectively. They
are transformed to repellers, and the doubled period
orbits appear in their vicinity. The period 0ne re-
peller C 0 and saddle C 0 appear in the vicinity of1 1

x sy subspace. These bifurcations lead to the moren n

developed bubbling attractor. At es0.8448 the
maximum eigenvalue of the saddle fixed point C 0

becomes equal to y1. As a result C 0 transforms to a
Ž .stable point Fig. 3 , and in its neighborhood the

saddle orbit of doubled period softly appears. This
bifurcation corresponds to the reversed subcritical
period-doubling bifurcation. At es0.8494 the fixed
point C 0 undergoes the similar bifurcation. As as

result it becomes the stable fixed point and in its
vicinity the saddle periodic orbit softly appears. The
bubbling attractor becomes the non-attracting chaotic

Žset chaotic attractor A in the vicinity of x sy0 n n
.subspace disappears and the process of the loss of

the chaos synchronization is completed.
In this work we studied dynamics of two coupled

non-identical logistic maps. Particularly, the process
of the loss of the chaos synchronization accompanied
by bubbling transition has been investigated. It was
shown that in the weakly non-identical systems the
process of losing stability of the synchronous regime
can be different from that identified for the identical
system, i.e. can be initiated without any bifurcations
of unstable periodic trajectories embedded in the
chaotic attractor, and it is due to the smooth shift of
one saddle periodic orbit from the chaotic attractor
located at the vicinity of x sy subspace. Period-n n

Ždoubling bifurcations and saddle-node ones the birth
.of new periodic orbits complete the process of the

loss of the chaos synchronization. We hope that this
mechanism is typical for the wide class of coupled
weakly non-identical systems, it can be observed
experimentally, and it has to be taken into account in
designing experimental systems based on chaos syn-
chronization.
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