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Abstract

Impacts in multibody mechanical systems are an object of interest for many scientists in the world. In this paper, we present a

principle of operation of the impact force generator being an element of the rotor of the heat exchanger. In this machine, step dis-

turbances of the rotational velocity of the generator cause rapid changes of the rotational velocity of the exchanger rotor, which leads

to the intensi®cation of the heat exchange process. We show the phenomenon of self-synchronization, regular motion of the system,

and in a special case: chaotic motion of the rotor. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

In many industrial machines, the impact of their movable parts is either the basic principle of their
operation or the e�ect which improves their operating e�ciency. The classic examples of such machines or
devices are: a pneumatic hammer, impact dampers, or heat exchangers. Lately the behavior of the bridges
during an earthquake is also investigated using the mathematical model with impacts. In the heat ex-
changer, one of the factors that contribute to intensi®cation of the exchange process are disturbances in the
rotational velocity of its rotor. These disturbances may have a character of step disturbances. The simplest
way to generate such disturbances is to employ the phenomenon of impact which causes, according to the
NewtonÕs hypothesis, step variations of the velocity of the bodies impacting on each other. These distur-
bances can have (depending on the assumed parameters of the generator) a periodical or chaotic character
[2,3].

The impact force generator consisting of an engine connected with the rotor by means of an elastic shaft,
was the object of investigations, results of which were presented in [1±3]. Below, a principle of operation of
another type of generator of step disturbances has been presented. The system now consists of the engine,
which is connected ®rmly with the rotor of the generator, and of the exchanger rotor, which is connected
with the generator by means of the elastic shaft. Two selected aspects of the generator operation have been
shown: the self-synchronization phenomenon and the conditions, whose ful®llment leads to the maximi-
zation of the amplitude of the rotor acceleration.

2. Physical model of the generator

The object of considerations is a system composed of three parts (Fig. 1):
· a rotor equipped with a fender, driven by an electric engine,
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· a hammer in the form of a cylinder with a semicircular end, mounted on the end of a cantilever beam,
· a rotor of the exchanger connected with generator by means of the elastic shaft.

During the operation of the generator, the rotor fender impacts on the hammer, which causes vibrations
of the hammer on one hand and the desired step variations of the rotational velocity of the rotor of the
generator on the other. These variations cause the sudden (but not step) changes of the rotational velocity
of the exchanger. The hammer vibrations are suppressed by a viscous damper. The masses of the cantilever
beam, the damper and the elastic shaft have been neglected. The drive engine is connected ®rmly with the
rotor of the generator. When the disturbances of the rotational velocity of the engine are small (less than a
few per cent) and the average value of this velocity is not far from the synchronical one, the driving moment
may be taken from the static characteristic of the engine.

Because of a rather sophisticated geometry of the system hammer ± rotor with fenders, two kinds of
impacts occur during its operation:
1. the fender collides with the cylindrical part of the hammer, and the line of impact is perpendicular to the

hammer axis,
2. the fender collides with the spherical part of the hammer, and the line of impact goes through the center

of the fender and the center of the basis of the spherical part of the hammer.
The mathematical model of the system consists of rather obvious equations of impacts, which are based on
NewtonÕs law, and were presented in [1], and of the equations of motion. Equations of motion of the
hammer, written in the Cartesian system of coordinates which is connected with the center of gravity of the
hammer in the static equilibrium position, are as follows:
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In the above equations, the fact is taken into account that the point at which the spring is joined to the mass
of the hammer is at the distance a from the gravity center. As it is very di�cult to de®ne the real character
and intensity of damping of the vibrations, the matrix of damping has a simpli®ed form: the damping
coe�cients C11 are calculated from the assumed logarithmic decrement of damping D.

Equations of motion of the rotor system, written in the coordinate system connected with the axis of the
rotations, are as follows:
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The coe�cient C/ is calculated from the assumed logarithmic decrement of damping of the torsional
vibrations D/. Me is the driven moment of the engine.

Fig. 1.
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3. Data of the system

The basic data of the considered system are as follows:
· The hammer: Inertial moment B� 12.14 ´ 10ÿ6 kg m2, mass m� 89.83 ´ 10ÿ3 kg, radius R� 0.01 m,

length lh� 0.03 m, cross-section of the beam I� 63.6 ´ 10ÿ12 m4.
· The rotor system: Inertial moment of the exchanger rotor Br� 0.015 kg m2, inertial moment of the engine

and rotor with fender Be� 0.015 kg m2, distance fender ± axis of rotations r� 0.1 m, length of the elastic
spring l� 0.2 m.

4. Principle of operation

A time diagram representing the motion of the rotor system is shown in Fig. 2. The time of the motion is
represented on the horizontal axis, and the rotational velocity of the rotor with fenders (thin line) and of the
exchanger rotor (thick line) on the vertical axis. As can be seen, during each rotation of the rotor, its fender
collides with the hammer causing the hammer vibrations and step variations of the angular velocity of this
rotor. Due to the elasticity of the shaft, the variations of the rotational velocity of the exchanger are of the
smaller amplitude, and do not have a step character.

5. In¯uence of the length of the cantilever beam on the system operation

Fig. 3 presents a map of impacts for many systems in which generators di�er in the length of the can-
tilever beam ls (D � ln�3�; D/ � ln�2� and ds � 0:2 m). The values of the angular velocity of the rotor
before (xbi) and after (xai) impacts and, additionally, the curves showing the values of the fractions of the
basic frequency of free vibrations of the hammer: 1/2a1 and 1/3a1 have been shown on this map. In Fig. 3, a
close relation between the variations of both the velocities xai and xbi and the function of a1 can be easily
observed. For instance: when ls� 0.0725 m, the rotor velocity xbi (close to its average angular velocity) is
equal to approximately 1/3 of the value of the basic frequency of free vibrations of the hammer a1. It means
that the impact forcing of these vibrations has a subharmonic frequency. Under such conditions, the
generation of the hammer vibrations occurs at minimal values of the impact impulse. As a consequence, the
values of xbi and xai are high, while the di�erence between them ± minimal.

An increase in the cantilever beam length (up to 0.085 m) causes of course a decrease in the value of
1/3a1. Despite it, however, the hammer `wants' the impact forcing of its free vibrations to have a

Fig. 2.

Fig. 3.
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subharmonic character: the impacts are stronger and stronger, which, as a consequence, causes the
diminishing of both xbi and xai. This way of a�ecting the angular velocity by the hammer has been called
the self-synchronization of the system. When ls exceeds the value 0.1 m, the conditions for easy generation
of the hammer vibrations with the next subharmonic frequency 1/2a1, arise and the situation repeats, up to
ls� 0.13 m. As can be seen, a choice of the length ls makes it possible to control both the average velocity of
the rotor and the intensity of the impacts.

6. In¯uence of the elastic shaft on the rotor acceleration

Fig. 4 shows a part of the time diagram of the system (analogous to the one in Fig. 2) for ls� 0.11 m
and ds� 0.02 m. We observe the discontinuities in the thin line (step changes of the velocity), and changes
of the velocities due to free torsional oscillations of the rotor system. For the exchange process a maxi-
mum value of the acceleration of the exchanger rotor plays a great role. This acceleration is shown in
Fig. 5 as the function of the rotational velocity. Comparing this ®gure with Fig. 6 (ds� 0.01 m) and Fig. 7
(ds� 0.04 m) enables us to establish the in¯uence of the sti�ness of the elastic shaft ks on the exchanger
acceleration.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.
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The results presented above were obtained for the logarithmic decrement D/ � ln�2�. The next
two ®gures present in¯uence of this decrement on the acceleration. As it can be seen, the amplitude of
acceleration hardly depends on the D/. For greater damping (Fig. 8, D/ � ln�4�� free vibrations diminish
very quickly, while for the small damping (Fig. 9, D/ � ln�1:2�� their amplitude diminishes slowly. In the
last case we have one impact during one rotation of the rotor, but up to four distinguished changes of the
acceleration, which is better for the exchange process.

7. Regularity of motion

Fig. 10 shows the con®guration of the hammer and fender during the impact for the case ls � 0:11 m
and ds � 0:02 m. As we see, all the impacts are identical, so we observe the regular motion with period 1.
Such state guarantees the stable and safe operation of the system. After introducing longer cantilever beam
or diminishing the damping we may observe the period multiplying (Fig. 11 ± period 3 for ls � 0:1825 m) or
the motion of the system may even become irregular (Figs. 12 and 13 ± chaos for ls � 0:1875 m). Such
operation conditions are very dangerous: during the chaotic motion of the system the impact of the second
kind occurs, which may lead to the damage of the cantilever beam.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.
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8. Conclusions

The object of the numerical investigations presented here is a mechanical impact force generator. During
the investigations it was found that in the majority of cases the system exhibited a regular motion and it is
possible to control both the intensity of impacts and the average value of the rotational velocity. By a
proper choice of the value of the sti�ness coe�cient of the elastic shaft connecting the generator and the
exchanger we may control the amplitude of the exchanger acceleration. When the frequency of impacts is
close to the ®rst natural frequency of hammer vibrations a1, it is possible to have the system with the
features of a chaotic motion.
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