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Abstract

We have shown that in practical systems the existence of co-existing attractors with unequal basins with fractal boundaries can lead

to the uncertainties similar to the uncertainty introduced by riddled basins in coupled systems. Ó 2000 Elsevier Science Ltd. All rights

reserved.

1. Introduction

Recently riddled basins have been found to be characteristic for higher-dimensional coupled systems
[1±4] as they have been observed both numerically and experimentally. The existence of riddled basins has
introduced a new type of uncertainty in dynamical systems, i.e. having the system operating on the desired
attractor we cannot be sure if this system will operate on the same attractor after small perturbation to its
trajectory.

In this paper we give evidence that in practical systems the existence of co-existing attractors unequal
basins with fractal boundaries can lead to the uncertainties similar to the uncertainty introduced by riddled
basins in coupled systems.

The outline of this paper is as follows. In Section 2 we recall some fundamental de®nitions of stability of
chaotic attractors and describe attractors with riddled basins. The simple mechanical system with impacts
and dry friction is investigated in Section 3. We identify co-existing attractors and their basins and show
that when the small noise is added into the systems some of these attractors cannot be reached. Finally we
summarize our results in Section 4.

2. Theoretical riddling

Let us recall the fundamental properties of chaotic attractors with riddled basins. In our description we
use the system of two coupled chaotic maps which can be considered as a prototype of higher-dimensional
dynamical systems.

Two identical chaotic systems xn�1 � f �xn� and yn�1 � f �yn�; x; y 2 R, evolving on asymptotically stable
attractor A, when one-to-one coupling

xn�1 � f �xn� � d1�yn ÿ xn�
yn�1 � f �yn� � d1�xn ÿ yn�

�1�

is introduced can be synchronized for some values of d1;2 2 R, i.e., jxn ÿ ynj ! 0 as n!1 [1±10].
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In the synchronized regime the dynamics of the coupled system (1) is restricted to one-dimensional
invariant subspace xn � yn, so the problem of synchronization of chaotic systems can be understood as a
problem of stability of one-dimensional chaotic attractor A in two-dimensional phase space [12,13]. The
basin of attraction b(A) is the set of points whose x-limit set contained in A. In MilnorÕs de®nition [11] of
an attractor the basin of attraction does not need to include the whole nieghbourhood of the attractor, i.e.,
we say that A is a weak Milnor attractor if b(A) has positive Lebesgue measure. For example, a riddled
basin [12±15] which has recently been found to be typical for a certain class of dynamical systems with an
invariant subspace x � y like for example Eq. (1), has positive Lebesgue measure but does not contain any
neighbourhood of the attractor. In this case an attractor A is transversely stable in the invariant subspace
xn ÿ yn, but its basin of attraction b(A) may be a fat fractal so that any neighbourhood of the attractor
intersects the basin with positive measure, but may also interest the basin of another attractor with positive
measure.

The dynamics of the systems (1) is described by two Lyapunov exponents. One of them describes the
evolution on the invariant manifold x� y and is always positive. The second exponent characterizes the
evolution transverse to this manifold and it is called transversal. If the transversal Lyapunov exponent is
negative, A is an attractor in the weak Milnor sense.

When the transversal Lyapunov exponent is negative, A is a locally riddled attractor, i.e., there is a
neighbourhood U of A such that in any neighbourhood V of any point in A, there is a set of points in V \ U
of positive measure which leave U in a ®nite time. The trajectories which leave neighbourhood U can either
go the other attractor (attractors) or after a ®nite number of iterations be diverted back to A. If there is a
neighbourhood U of A such that in any neighbourhood V of any point in A, there is a set of points in V \cap
U of positive measure which leaves U in ®nite time and goes to another attractor, then the basins of A are
globally riddled.

3. Practical riddling

The phenomenon of riddled basins described in the previous section seems to be very di�cult to be
observed in mechanical engineering systems as for example the condition of coupled systems to be identical
(necessary for coupled system to have invariant manifold) is nearly impossible to be ful®lled. However, we
will shortly argue that the uncertainty similar to the one caused by riddled basins can occur in high-
dimensional systems.

Let us consider the simple physical system shown in Fig. 1. The mass m1 is connected to a vibrator giving
sinusoidal force F0 cos xt through the spring-damper system with sti�ness coe�cient k1 and damping co-
e�cient c1. The second mass m2 is placed on mass m1 and its movement is limited by two borders A and B.
The motion of mass m2 on mass m1 is in¯uenced by friction force Ft.

The considered model can be described by the following dimensionless equations:

X k1 � b1X j1 � X1 � kÿ b1d�X j1 ÿ X j2� � cos gs

xjj2 ÿ �k=l� ÿ �d=l�b1�X j1 ÿ X j2� � 0;
�2�

where: X1 � �k1=m1�1=2
; b1 � c1=X1; b2 � c2=X1; X j � dX=ds; X jjd2X=ds2; k � Ft=F0; s � X1t-time

transformation, l � m2=m1; d � c2=c1; fT � Ft=m2g and g is gravitational acceleration. In order to describe
the dry friction force we have considered a linear model [19]. The equation and characteristic behaviour of
this model have been investigated in e.g. [16,17].

The bifurcation diagram of the system (2) the relative displacement x vs. control parameter
g 2 �1:76; 2:76� for typical system parameters k � 0:02; r � 0:8; d � 0:5;R � 0:6; b1 � 0:1 and l � 0:693 is
presented in Fig. 2. This ®gure shows the complicated structure which is caused by the jumps of system
trajectory from one of three or four co-existing attractors of di�erent type (periodic, chaotic and two
di�erent quasi-periodic attractors can be observed [18]) to another as the bifurcation parameter is slowly
changed. This jumps occur in random unpredictable fashion and as a result of them one cannot predict on
which attractor the system will evolve after small perturbation of it.
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The basins of attraction of the above-mentioned attractors are shown in Fig. 3(a) and (b) for g � 1:89
(Fig. 3(a)) and g � 2:16 (Fig. 3(b)). The cross-section of the 5-dimensional phase Eq. (2), de®ned as
R � f�X2;X

j
2 � dX2=ds�j�X2;X

j
2 � dX2=ds� 2 �ÿ0:4; 0:4� � �ÿ1:5; 1:5�; X1 � X j1 � dX=ds � 0; s � 2pk; k �

1; 2; . . .g was considered as a set of initial conditions. For the trajectory starting at a point in R, the limiting
attractor has been determined. The red colour marks the basin of the periodic attractor, the navy-blue
marks the basin of the quasi-periodic attractor one, the yellow marks the basin of di�erent quasi-periodic
attractor and the blue marks the basin of the chaotic attractor. This ®gure shows that the systemÕs be-
haviour is a strongly dependent on small changes of the initial conditions. We can observe mostly chaotic
motion and three attractors co-exist in phase space.

The analysis of Fig. 3 shows that the basins of some attractors are so small that random noise prevents
trajectories from reaching them. For example, for small noise intensity and g � 1:89 only periodic and
chaotic attractors can be reached by the system and for larger noise intensity only the chaotic attractor is
possible. Global bifurcations of basin boundaries, resulting in the size changes of particular basins, result in

Fig. 1. The model of the system: m1: primary mass, m2: additional mass, k1: spring constant, c1, c2: damping constants, x1, x2:

coordinates of the motion of the masses m1, m2, e: static clearance between the masses m1, m2, Ft: friction force, F0: amplitude of the

exciting force, x: angular frequency of the exciting force, X1: natural frequency of the primary system, R: restitution coe�cient,

xst � F0=k1: static displacement, r � e=xst: relative clearance, g � x=X1: relative frequency of the exciting force.

Fig. 2. Bifurcation diagram of the system (2) for typical system parameters: k � 0:02; r � 0:8; d � 0:5;R � 0:6; b1 � 0:1 and l � 0:693.

Fig. 3. Basins of attraction of co-existing attractors; (a) g � 1:89, (b) g � 2:16. The cross section of the 5-dimensional phase Eq. (2),

de®ned as R � f�X2;X
j
2 � dX2=ds�j�X2;X

j
2 � dX2=ds� 2 �ÿ0:4; 0:4� � �ÿ1:5; 1:5�; X1 � X j1 � dX=ds � 0; s � 2pk; k � 1; 2; . . .g was

considered as a set of initial conditions. For the trajectory starting at a point in R, the limiting attractor has been determined. The red

colour marks the basin of the periodic attractor, the navy blue marks the basin of the quasi-periodic attractor one, the yellow marks the

basin of di�erent quasi-periodic attractor and the blue marks the basin of the chaotic attractor.
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the trajectories jumping from one attractor to another. These jumps explain the structure of the bifurcation
diagram of Fig. 2. A detailed analysis of Fig. 3 is described in [18].

4. Conclusions

We have shown that in practical systems the existence of co-existing attractors with unequal basins with
fractal boundaries can lead to the sudden unexpected jumps of the system trajectory from one attractor to
another. These jumps cannot be predicted and are present no matter how small are noise level in our
systems. Dynamical uncertainty introduced by these jumps is similar to the uncertainty introduced by
riddled basins in coupled systems.
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