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The chaos-hyperchaos transition occurs when the second Lyapunov exponent becomes positive. We argue
that this transition is mediated by changes in the stability of an infinite number of unstable periodic orbits
embedded in the chaotic attractor. Bifurcations of unstable periodic orbits occur in the neighborhood of the
chaos-hyperchaos transition point where we observe unstable variable dimensionality. We give evidence that
the chaos-hyperchaos transition is initiated(bythe saddle-repeller bifurcation of a particular unstable peri-
odic orbit usually of low period(ii) the appearance of a repelling node in the saddle-node bifurcation, after
which the chaotic attractor becomes riddled,(idr) the absorption of the repelléunstable node or focus
originally located out of the attractor by the growing attractor.

PACS numbds): 05.45-a

Extensive studies of the techniques to confidland syn-  wherex,,y,e R are dynamical variableg,(x)=ax(1—x)
chronize[2] chaotic systems have stimulated growing inter-is a logistic mapa is the system parameter of the single map
est in high-dimensional hyperchaotic systems. Such systenfs :x—f,(x), ande is the coefficient of coupling which we
are characterized by at least two positive Lyapunov expoeonsider as a control parameter. The primary reason for
nents for typical trajectories in the arbitrarily high phasechoosing two-dimensional maps to illustrate our results is
space. The first example of such a system was presented kiyat, for such systems, there exists a procedure for computing
Rossler[3] for a model of a particular chemical reaction. unstable periodic orbits with higher periods embedded into a
Later, hyperchaotic attractors have been found in electronichaotic attractor with high precisidig].
circuits and other chemical reactiof®. In [5] it was shown Our map(1) is noninvertible and its attractor presents an
that by weakly couplingn chaotic systems it is possible to invariant chaotic set which is enclosed in the so-catibd-
obtain a hyperchaotic attractor withpositive Lyapunov ex-  otic area (according to the terminology of Mirat al. [9]).
ponents. The transition from chaos to hyperchaos was studrhis chaotic area is an invariant region of the two-
ied in[6]. It was shown that at this transition the attractor’s dimensional phase space bounded typically by a finite num-
dimension and the second Lyapunov exponent grow continuser of segments of the so-callexiitical lines, which are
ously. obtained from the iterations of the seg={(x,y):DF(x,y)

In this paper we consider a dynamical system evolving on=0}, i.e., curves where the JacobiBxF vanishes, wheré&

a chaotic attractoA (i.e., with one positive Lyapunov expo- is the map given by Eq1).

nend and allow the control parameter to vary slowly in such  Examples of the attractors located inside the chaotic area,
a way that the second Lyapunov exponent becomes positiier a=a,~3.678 573 5110] and two different values of the

so that the attractoA becomes hyperchaotic. We give evi- coupling parametes are shown in Fig. (a,b). The attractor
dence that the chaos-hyperchaos transition is typicallghown in Fig. 1a) is a chaotic one characterized by the

stretching(spreading along the control parameter interval, Lyapunov exponentd;~0.11 and\,~—0.04, i.e., before
and that its mechanism has the same characteristic featurfe chaos-hyperchaos transition, while that in Fi¢p) lis

as the blowout bifurcation of attractors located at invarianthyperchaotic with Lyapunov exponents;~0.13 andX,
manifolds in systems with symmet{y]. We show that the ~0.0068, i.e., after the transitiofilt should be added that
transition to hyperchaos begins when a repeller arises in thgere exist other attractors symmetrical in relation to the in-
attractor and that one of the following conditions should beyariant manifoldx=y to those shown in Fig. (&,b. These
fulfilled for this: (i) some usually low-periodic orbiy, em-  attractors have the same properties as those described be-
bedded in the chaotic attractarundergoes a saddle-repeller jow.] As we can see, the shapes of the attractors are similar,
bifurcation; (ii) a repelling node in the attractor appears inso the transition from chaos to hyperchaos seems to be soft
the saddle-node bifurcatioiiji) the repellerunstable node and continuous as described[#]. Although the systenf)

or focus originally located out of the attractor is absorbed by has symmetry, its attractors shown in Figah are not lo-

the growing attractor. At this control parameter point, thecated at the invariant manifold, so this system can be used
attractor loses its asymptotic stability and its basin becomefor description of the general properties of the chaos-

riddled (at least locally. hyperchaos transition. Characterizing the chaos-hyperchaos
As an example, consider a two-dimensional nfrain the  transition in terms of periodic orbits embedded in the attrac-
form tor, one observes that in the first, chaotic case, most of the
periodic orbits in the attractor are saddles, while in the sec-
Xn+1= Fa(Xn) e[ falyn) = fa(Xn)], ond case most of them are unstable nodes or focuses. Let us
(1) take into account the numbers of repellarastable nodes or
VYnr1=Falyn) te[fa(xn) —falyn) 1, focuseg and saddles inside the attracfrThese numbers up
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0.385 TABLE I. Number of unstable periodic orbits of saddle and
repeller typesa=a,=3.67857351;(a) e=¢,=0.964; (b) e=¢,
=0.965.

Period Saddle Repeller
@
4 0 0
y 8 1 1
12 0 0
16 2 0
20 3 1
24 4 0
28 4 2
0.345 32 4 1
' (b)
(@ 4 0 1
8 0 2
0.389 12 0 2
16 2 2
20 1 5
24 3 5
28 4 6
32 3 10
y
R
R 2
Ap=i21 p(Yf . PNV .p), 2
WhereN‘;’ and Nﬁ are the numbers of saddles and repellers,
respectively; and the cyclg® weight
0.343 p y yCIgi g
0.79 X 0.89 /v,
(b) p(¥.P)= s
p P
FIG. 1. Attractors of the maj for a=a,=3.67857351;(a) 21 /vy
1=

chaotic ate =¢,=0.964, (b) hyperchaotic at=e,=0.965 (only

one piece of four-piece attractors is shgwn . . .
approximates ap— o the natural measure of typical trajec-

to period 32 are collected in Tablgd,b for a=a, and two tories onA that stay close to the periqa-orbit considered

different valuese; ande, of the coupling parameter [cor- [11] .
responding to the attractors shown in Figa,b]. As can be Frorg the formulas ;O'Ai andAg one can find that aa
seen, the number of saddles is greater than the number ﬁsoiAza(Sl)zo-GB:Azs(sl);0-0975iA32(81):0-8R76 88,
nodes fore =&,; and vice versa foe =e,. This shows that AzA1)=0.0648; and Azy(e;)=0.514154, Azye))
for ¢ =&, the attractor should be apparently chaotic, and at4-774 911 5;A3,(e,) =0.066 985,A5,(,) =3.557 403 2.
the values, hyperchaotic. These calculations also support the fact that ate; the
To be more accurate, we define the following quantitativeattractorA is chaotic, but at=¢, hyperchaotic. They also
characteristics for the chaos-hyperchaos transition: the sadd@iive evidence that the transition from chaos to hyperchaos
and repeller Weightg,\g andA,Fj of all periodp saddles and occurs when the numbers of saddles and repellers in the at-
repellers. We will do it by analogy with the approach devel-tractor are balanced, which can be indicated by approxi-
oped in[7] for the blowout bifurcation in systems with in- mately the same saddle and repeller weights, for a suffi-
variant subspace. ciently large periodp. At the bifurcation point, the second
Let yP be a periods orbit of the two-dimensional map, ~ Lyapunov exponenk,=N\(A) of the attractorA should be
and A, and \, its larger and smaller Lyapunov exponents, €qual to zero; it can be found that the parameters, value
respectively, and let;=e1, p,=e*2 be the larger and for this is e,=0.964 995(for a=ay). -
smaller Lyapunov numbers. Then we define the following The critical values =&y, when the transition from chaos to
periodp saddle and repeller weights: hyperchaos occurs is analogous to the point of blowout bi-
furcation in systems with invariant subspacd, and we
come to the conclusion that the chaotic attractor becomes
p p hyperchaotic due to the same mechanism as a blowout
P(YT.PIX2(7T.P), bifurcation.

s
S Np
Ap=. .
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4 4 4 4 4 This supposition describes one of the typical situations. In-
deed, if our attractoA is still chaotic(not hyperchaotig it
cannot cover the whole open region Rf phase space. In
this case, one of the possibilities is thathas a “Cantor

k //S R structure” in the direction transverse to the “sheets” of the

w2
=
w2

A 4
A
A 4
F 3
v

attractor]9]. If this holds, we have a repelling periodic orbit
R connected by a separatrix with the sad@ewhich does
not belong to the attractor, together with some of its neigh-
borhood.
J For a class of two-dimensional noninvertible maps like
' v v v v Eqg. (1) this implies that arbitrarily close to the repellBr
(belonging to the attractoA) one can find[9] a positive
(a) (b) measure set of points which after some iterations will enter a
sufficiently small neighborhood @& (they are in the tongues
FIC_S. 2. Bifurcations leading to the occurrence of repellers inSidelssuing fromR and bounded by the invariant curves of the
chaotic attractors. map F). Consequently, these points will go away from the
attractor and just after the bifurcation the attracdocannot
Varying the coupling parameter further to the right we pe asymptoticallytopologically stable any longer but only
observe that the relative number of repellers insidén- stable in the Milnor senskL2].
creases more and more. Finally, at some valee: ¢ '_[he_last The situation is analogous when both the repeReand
saddle disappears, so that for ¢ all unstable periodic or-  1he saddies belong to the attractor. Indeed, in this case, the
bits msu_je the attractor are repe!lers. ' . .. separatrix connecting the repellRwith the saddles should
. Con3|der the bifurcation in which the first perlodu_: (_)_rl?|t cross(contain intervals of points not belonging to the attrac-
|n_S|de the attractor becomes a repeller.. Three possibilities f%r A[9]. Preimages of such intervals, those belonging to the
this can pe realllze.d In our modél) It is due to a sgddle- separatrix and not belonging #, will be accumulating in
repellglr bggrcayon. tfhehelgenvaltég(y)déclzorrespondmg 0 the repellerR (more accurately, some part of the preimages
ils.taths salgjzclzgobnec%n:eg efr?il?g,taslae noedeq(l:?{fag;ogszessad %I have this property so that our mdpis noninvertible.
y erefore, by the same arguments, there exists a positive

of doubled periodFig. 2(a)]. (2) It is due to a saddle-node 2 )
bifurcation: a saddle and unstable node are created: the se@€asure set of points in the neighborhood of the rep&ller

ond eigenvalues,(y) is equal to 1 at the moment of bifur- which wi.II go away from the attractc(rat some (_jistance cor-
cation and then becomes larger thaifiFlg. 3b)]. (3) Itis  "esponding to the scale of the intervals mentioned
due to the absorptiothunting of the repellefunstable node ~ Note that both the repeller and the sadsllere situated
or focu9, situated at some rather small distance from thenside the shape of the chaotic area which is bounded by
attractor, by the growing attractor. critical lines. The trajectories that first go out from the attrac-
Schematic representations of the behavior of the trajectdor (by the mechanism described abpeannot escape from
ries in the neighborhood of the bifurcating cycles in the firstthe chaotic area. Finally, almost all of them will be attracted
two cases are shown in Fig(&2b. They give evidence that back by the chaotic attractéyif there are no other attractors
there exist trajectories which, when starting arbitrarily closeinside the chaotic area. In this case, the basin of attraction of
to the repellerR, approach the saddle at some sufficientlythe attractorA will be locally riddled[13]. To be convinced
small distance and later go along the unstable manifoldof this, consider a set of preimages of the repeReAs our
Mechanismg1) and(2) for the appearance of the repeller in mapF is noninvertible[each point ,y) has 0, 2, or 4 pre-
the chaotic attractor can be considered as inner scenarios aflages, and as numerical evidence supports, the set of pre-
the third one as an outer one. images ofR is dense in the attractdk [computations using
Suppose thattl) or (2) takes place and the newly created gnaytical formulas for the inverse map show that the preim-
repellerR belongs to the attractor, but the saddles do notages ofR create the same shape as the attractors shown in
Fig. 1(a,n]. We cannot prove this fact analytically as our
Chaos-hyperchaos transition map (1) is two dimensional, but for one-dimensional maps
(blowout bifurcation) this property is rigorously proved for attractors with a
“good” invariant measurég14]. Now, if the set of preimages
is supposed to be dense in the attracdprwe can easily
come to the conclusion that after the bifurcation of the cre-
ation of the repeller insid@, the basin of attraction oA is
riddled [15] at least locally{ 16].

This basin may also be globally riddled if there exist other
attractors inside the shape of the chaotic area. The existence
€ of such attractors(usually they develop from attracting
r b s . . . .

cycles with a narrow radius of attractipis rather typical for

FIG. 3. Control parameter interval of the chaos-hyperchaos trantwo dimensional(discret¢ maps. It may be related to the
sition. existence of so-called Newhouse regions in parameter space,

The last saddle

The first repeller appears disappears
(Riddling bifurcation)

o o &

A\ 4
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caused by the persistence of homoclinic tender{di@ For  rameter value at which the last saddle disappears and for
a Henon map, the phenomenon was shown to be typical in>¢ all unstable periodic orbits embedded in the chaotic
[18]. attractor are repellers.

Let us fix the system parameter=a, and choose the  When the chaotic attractok of a two-dimensional map
coupling parametet such thatA will be a chaotic attractor |ocated at the invariant manifold undergoes a blowout bifur-
and all unstable periodic orbits embedded on it are saddlgation it is replaced byi) an attractor at infinity, ofii) a
points. Then varyindincreasing in our cases we find the  chaotic or(iii) hyperchaotic attractor located out of the in-
moment of the appearance of the first repeRensideA. It ariant manifold, oriv) periodic attractor. In case§) and
appears to happen in accordance with the mechai$na jii) we observe a sudden increase of the attractor's dimen-
period-8 saddle transforms to an unstable node in a sUpeLion from a value smaller than or equal to 1 to a value sig-

critical period doubling, att =¢,~0.9277[Fig. 2(a)] and nificantl -
M= : . : y larger than Ibut smaller than or equal t0.2This
after this bifurcation the basin @& should become riddled. phenomenon is connected with the sudden increase of the

With a further increase of, saddle-repeller bifurcations of . . : .
the same tvpe for two period-28 cvcles are observed Aftedlmen5|on of the manifold on which the system evolves be-
yp P Y : ore and after the blowout bifurcation rather than with the

them, a period-20 repeller arises in a saddle-node bifurcatioB.]c i hani At the ch h h ¢ i
[mechanism2) as in Fig. Zb)]. With further increase o, flurcation mechanism. € chaos-hyperchaos fans_| lon
we do not observe a sudden increase of the attractor’s dimen-

. . : . in[6]. Other features of the blowout bifurcation, like
mechanisms: period-doubling, saddle-node, and absorpnoﬂOn as in| . . ’
bifurcations. Some of the unstable periodic orbits can transi€ riddied basing(at least locally riddled 19]) and the
form into unstable focuses in a Hopf bifurcation. changes in the stability of an infinite number of unstable

The first bifurcation in which the first periodic repeller periodic orbits embedded in the chaotic attractor, are present

appears i he ot atrackbate— o, may be called he 1, "¢ €305 perchaos anstion, so we have stong v
riddling bifurcation—analogously to the same type of bifur- mechanism of the blowout bifurcation
cation known for systems with the chaotic attractor in invari- :

ant subspacgl5]. Therefore, from our observations, we may To summarize, we have shown here that the transition

conclude that the transition from a chaotic to a hyperchaoti(gicf):j?c(;:i{:‘)?]S itr? gygeéfehrﬁovsvi'tshasb'fmur:]C;tr'oni;hﬁ:’elg?th dbltc))W(;L:]t
attractor starts from a riddling bifurcation. Therefore, we. y y Y, y

conclude that the chaos-hyperchaos transition is accompéggggilgurg?gdg gg?:gbg(;c%?;'gdr'g Oerl?eltrss ilgflﬂléelrz/eimﬂggr-
nied by the existence of a control parameter intergat £), P P 9

in which one observes unstable variable dimensionalityhOOd of this transition. The whole process is initiated when

shown in Fig. 3. The following conditions applyi.) For
<¢g, all unstable periodic orbits embedded in the chaotic
attractor are of the saddle typ@.) £=¢, is the control pa-
rameter valugof the riddling bifurcation at which the first
repeller appears in the attractdiii) In the interval €, ,ep)
infinitely many unstable periodic orbits bifurcate from the

attractor. (iv) The transition chaos-hyperchaos occurs at
some parameter value= ¢, inside the interval £, ,e); at
this parameter value the weights of saddles and repéters
fined by Eq.(2)] are balanced(v) e=¢g is the control pa-

t

bne of the following conditions is fulfilled(i) the saddle-
repeller bifurcation of a particular unstable periodic orbit
usually of low period(ii) the appearance of a repelling node
in the saddle-node bifurcation, after which the chaotic attrac-
tor becomes riddled, ofiii) the absorption of the repeller
(unstable node or focu®riginally located out of the attrac-

saddle to the repeller and new repellers appear in the chaotgg

r by the growing attractor, which leads to the occurrence of
riddled basin of the chaotic attractor.
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