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Chaos-hyperchaos transition
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The chaos-hyperchaos transition occurs when the second Lyapunov exponent becomes positive. We argue
that this transition is mediated by changes in the stability of an infinite number of unstable periodic orbits
embedded in the chaotic attractor. Bifurcations of unstable periodic orbits occur in the neighborhood of the
chaos-hyperchaos transition point where we observe unstable variable dimensionality. We give evidence that
the chaos-hyperchaos transition is initiated by~i! the saddle-repeller bifurcation of a particular unstable peri-
odic orbit usually of low period,~ii ! the appearance of a repelling node in the saddle-node bifurcation, after
which the chaotic attractor becomes riddled, or~iii ! the absorption of the repeller~unstable node or focus!
originally located out of the attractor by the growing attractor.

PACS number~s!: 05.45.2a
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Extensive studies of the techniques to control@1# and syn-
chronize@2# chaotic systems have stimulated growing int
est in high-dimensional hyperchaotic systems. Such syst
are characterized by at least two positive Lyapunov ex
nents for typical trajectories in the arbitrarily high pha
space. The first example of such a system was presente
Rossler@3# for a model of a particular chemical reactio
Later, hyperchaotic attractors have been found in electro
circuits and other chemical reactions@4#. In @5# it was shown
that by weakly couplingn chaotic systems it is possible t
obtain a hyperchaotic attractor withn positive Lyapunov ex-
ponents. The transition from chaos to hyperchaos was s
ied in @6#. It was shown that at this transition the attracto
dimension and the second Lyapunov exponent grow cont
ously.

In this paper we consider a dynamical system evolving
a chaotic attractorA ~i.e., with one positive Lyapunov expo
nent! and allow the control parameter to vary slowly in su
a way that the second Lyapunov exponent becomes pos
so that the attractorA becomes hyperchaotic. We give ev
dence that the chaos-hyperchaos transition is typic
stretching~spreading! along the control parameter interva
and that its mechanism has the same characteristic fea
as the blowout bifurcation of attractors located at invari
manifolds in systems with symmetry@7#. We show that the
transition to hyperchaos begins when a repeller arises in
attractor and that one of the following conditions should
fulfilled for this: ~i! some usually low-periodic orbitg, em-
bedded in the chaotic attractorA undergoes a saddle-repell
bifurcation; ~ii ! a repelling node in the attractor appears
the saddle-node bifurcation;~iii ! the repeller~unstable node
or focus! originally located out of the attractor is absorbed
the growing attractor. At this control parameter point, t
attractor loses its asymptotic stability and its basin becom
riddled ~at least locally!.

As an example, consider a two-dimensional mapF in the
form

xn115 f a~xn!1«@ f a~yn!2 f a~xn!#,
~1!

yn115 f a~yn!1«@ f a~xn!2 f a~yn!#,
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wherexn ,ynPR are dynamical variables,f a(x)5ax(12x)
is a logistic map,a is the system parameter of the single m
f a :x° f a(x), and« is the coefficient of coupling which we
consider as a control parameter. The primary reason
choosing two-dimensional maps to illustrate our results
that, for such systems, there exists a procedure for compu
unstable periodic orbits with higher periods embedded int
chaotic attractor with high precision@8#.

Our map~1! is noninvertible and its attractor presents
invariant chaotic set which is enclosed in the so-calledcha-
otic area ~according to the terminology of Miraet al. @9#!.
This chaotic area is an invariant region of the tw
dimensional phase space bounded typically by a finite nu
ber of segments of the so-calledcritical lines, which are
obtained from the iterations of the setL05$(x,y):DF(x,y)
50%, i.e., curves where the JacobianDF vanishes, whereF
is the map given by Eq.~1!.

Examples of the attractors located inside the chaotic a
for a5a0'3.678 573 51@10# and two different values of the
coupling parameter« are shown in Fig. 1~a,b!. The attractor
shown in Fig. 1~a! is a chaotic one characterized by th
Lyapunov exponentsl1'0.11 andl2'20.04, i.e., before
the chaos-hyperchaos transition, while that in Fig. 1~b! is
hyperchaotic with Lyapunov exponentsl1'0.13 andl2
'0.0068, i.e., after the transition.@It should be added tha
there exist other attractors symmetrical in relation to the
variant manifoldx5y to those shown in Fig. 1~a,b!. These
attractors have the same properties as those described
low.# As we can see, the shapes of the attractors are sim
so the transition from chaos to hyperchaos seems to be
and continuous as described in@6#. Although the system~1!
has symmetry, its attractors shown in Fig. 1~a,b! are not lo-
cated at the invariant manifold, so this system can be u
for description of the general properties of the cha
hyperchaos transition. Characterizing the chaos-hyperch
transition in terms of periodic orbits embedded in the attr
tor, one observes that in the first, chaotic case, most of
periodic orbits in the attractor are saddles, while in the s
ond case most of them are unstable nodes or focuses. L
take into account the numbers of repellers~unstable nodes o
focuses! and saddles inside the attractorA. These numbers up
1972 ©2000 The American Physical Society
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PRE 62 1973CHAOS-HYPERCHAOS TRANSITION
to period 32 are collected in Table I~a,b! for a5a0 and two
different values«1 and«2 of the coupling parameter« @cor-
responding to the attractors shown in Fig. 1~a,b!#. As can be
seen, the number of saddles is greater than the numbe
nodes for«5«1; and vice versa for«5«2. This shows that
for «5«1 the attractor should be apparently chaotic, and
the value«2 hyperchaotic.

To be more accurate, we define the following quantitat
characteristics for the chaos-hyperchaos transition: the sa
and repeller weightsLp

S andLp
R of all period-p saddles and

repellers. We will do it by analogy with the approach dev
oped in @7# for the blowout bifurcation in systems with in
variant subspace.

Let g i
p be a period-p orbit of the two-dimensional mapF,

and l1 and l2 its larger and smaller Lyapunov exponen
respectively, and letn15el1, n25el2 be the larger and
smaller Lyapunov numbers. Then we define the followi
period-p saddle and repeller weights:

Lp
S5(

i 51

Np
S

r~g i
p ,p!l2~g i

p ,p!,

FIG. 1. Attractors of the mapF for a5a053.678 573 51;~a!
chaotic at«5«150.964, ~b! hyperchaotic at«5«250.965 ~only
one piece of four-piece attractors is shown!.
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Lp
R5(

i 51

Np
R

r~g i
p ,p!l2~g i

p ,p!, ~2!

whereNp
S andNp

R are the numbers of saddles and repelle
respectively; and the cycleg i

p weight

r~g i
p ,p!5

1/n1

(
i 51

Np
S

1Np
R

1/n1

approximates asp→` the natural measure of typical trajec
tories onA that stay close to the period-p orbit considered
@11#.

From the formulas forLp
S andLp

R one can find that ata
5a0:L28

S («1)50.66, L28
R («1)50.0975;L32

S («1)50.876 88,
L32

R («1)50.0648; and L28
S («2)50.514 154, L28

R («2)
54.774 911 5;L32

S («2)50.066 985,L32
R («2)53.557 403 2.

These calculations also support the fact that at«5«1 the
attractorA is chaotic, but at«5«2 hyperchaotic. They also
give evidence that the transition from chaos to hyperch
occurs when the numbers of saddles and repellers in the
tractor are balanced, which can be indicated by appro
mately the same saddle and repeller weights, for a su
ciently large periodp. At the bifurcation point, the secon
Lyapunov exponentl25l2(A) of the attractorA should be
equal to zero; it can be found that the parameter«5«b value
for this is «b50.964 995~for a5a0).

The critical value«5«b when the transition from chaos t
hyperchaos occurs is analogous to the point of blowout
furcation in systems with invariant subspace@7#, and we
come to the conclusion that the chaotic attractor becom
hyperchaotic due to the same mechanism as a blow
bifurcation.

TABLE I. Number of unstable periodic orbits of saddle an
repeller types,a5a053.678 573 51;~a! «5«150.964; ~b! «5«2

50.965.

Period Saddle Repeller

~a!

4 0 0
8 1 1

12 0 0
16 2 0
20 3 1
24 4 0
28 4 2
32 4 1

~b!

4 0 1
8 0 2

12 0 2
16 2 2
20 1 5
24 3 5
28 4 6
32 3 10
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Varying the coupling parameter further to the right w
observe that the relative number of repellers insideA in-
creases more and more. Finally, at some value«5«s the last
saddle disappears, so that for«.«s all unstable periodic or-
bits inside the attractor are repellers.

Consider the bifurcation in which the first periodic orbitg
inside the attractor becomes a repeller. Three possibilities
this can be realized in our model.~1! It is due to a saddle-
repeller bifurcation: the eigenvaluen2(g) ~corresponding to
a stable direction of the second saddle cycleg) crosses
21; the saddle becomes an unstable node creating a sa
of doubled period@Fig. 2~a!#. ~2! It is due to a saddle-nod
bifurcation: a saddle and unstable node are created; the
ond eigenvaluen2(g) is equal to 1 at the moment of bifur
cation and then becomes larger than 1@Fig. 3~b!#. ~3! It is
due to the absorption~hunting! of the repeller~unstable node
or focus!, situated at some rather small distance from
attractor, by the growing attractor.

Schematic representations of the behavior of the traje
ries in the neighborhood of the bifurcating cycles in the fi
two cases are shown in Fig. 2~a,b!. They give evidence tha
there exist trajectories which, when starting arbitrarily clo
to the repellerR, approach the saddle at some sufficien
small distance and later go along the unstable manif
Mechanisms~1! and~2! for the appearance of the repeller
the chaotic attractor can be considered as inner scenarios
the third one as an outer one.

Suppose that~1! or ~2! takes place and the newly create
repeller R belongs to the attractor, but the saddles do n

FIG. 2. Bifurcations leading to the occurrence of repellers ins
chaotic attractors.

FIG. 3. Control parameter interval of the chaos-hyperchaos t
sition.
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This supposition describes one of the typical situations.
deed, if our attractorA is still chaotic~not hyperchaotic!, it
cannot cover the whole open region inR2 phase space. In
this case, one of the possibilities is thatA has a ‘‘Cantor
structure’’ in the direction transverse to the ‘‘sheets’’ of th
attractor@9#. If this holds, we have a repelling periodic orb
R connected by a separatrix with the saddleS, which does
not belong to the attractor, together with some of its neig
borhood.

For a class of two-dimensional noninvertible maps li
Eq. ~1! this implies that arbitrarily close to the repellerR
~belonging to the attractorA) one can find@9# a positive
measure set of points which after some iterations will ente
sufficiently small neighborhood ofS ~they are in the tongues
issuing fromR and bounded by the invariant curves of th
map F). Consequently, these points will go away from t
attractor and just after the bifurcation the attractorA cannot
be asymptotically~topologically! stable any longer but only
stable in the Milnor sense@12#.

The situation is analogous when both the repellerR and
the saddleS belong to the attractor. Indeed, in this case, t
separatrix connecting the repellerR with the saddleSshould
cross~contain! intervals of points not belonging to the attra
tor A @9#. Preimages of such intervals, those belonging to
separatrix and not belonging toA, will be accumulating in
the repellerR ~more accurately, some part of the preimag
will have this property so that our mapF is noninvertible!.
Therefore, by the same arguments, there exists a pos
measure set of points in the neighborhood of the repelleR
which will go away from the attractor~at some distance cor
responding to the scale of the intervals mentioned!.

Note that both the repeller and the saddle~s! are situated
inside the shape of the chaotic area which is bounded
critical lines. The trajectories that first go out from the attra
tor ~by the mechanism described above! cannot escape from
the chaotic area. Finally, almost all of them will be attract
back by the chaotic attractorA if there are no other attractor
inside the chaotic area. In this case, the basin of attractio
the attractorA will be locally riddled @13#. To be convinced
of this, consider a set of preimages of the repellerR. As our
mapF is noninvertible@each point (x,y) has 0, 2, or 4 pre-
images#, and as numerical evidence supports, the set of p
images ofR is dense in the attractorA @computations using
analytical formulas for the inverse map show that the pre
ages ofR create the same shape as the attractors show
Fig. 1~a,b!#. We cannot prove this fact analytically as o
map ~1! is two dimensional, but for one-dimensional ma
this property is rigorously proved for attractors with
‘‘good’’ invariant measure@14#. Now, if the set of preimages
is supposed to be dense in the attractorA, we can easily
come to the conclusion that after the bifurcation of the c
ation of the repeller insideA, the basin of attraction ofA is
riddled @15# at least locally@16#.

This basin may also be globally riddled if there exist oth
attractors inside the shape of the chaotic area. The exist
of such attractors~usually they develop from attractin
cycles with a narrow radius of attraction! is rather typical for
two dimensional~discrete! maps. It may be related to th
existence of so-called Newhouse regions in parameter sp
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PRE 62 1975CHAOS-HYPERCHAOS TRANSITION
caused by the persistence of homoclinic tendencies@17#. For
a Hénon map, the phenomenon was shown to be typica
@18#.

Let us fix the system parametera5a0 and choose the
coupling parameter« such thatA will be a chaotic attractor
and all unstable periodic orbits embedded on it are sad
points. Then varying~increasing in our case! « we find the
moment of the appearance of the first repellerR insideA. It
appears to happen in accordance with the mechanism~1!: a
period-8 saddle transforms to an unstable node in a su
critical period doubling, at«5« r'0.9277 @Fig. 2~a!# and
after this bifurcation the basin ofA should become riddled
With a further increase of«, saddle-repeller bifurcations o
the same type for two period-28 cycles are observed. A
them, a period-20 repeller arises in a saddle-node bifurca
@mechanism~2! as in Fig. 2~b!#. With further increase of«,
more and more unstable nodes appear as a result of all
mechanisms: period-doubling, saddle-node, and absorp
bifurcations. Some of the unstable periodic orbits can tra
form into unstable focuses in a Hopf bifurcation.

The first bifurcation in which the first periodic repelle
appears in the chaotic attractorA at «5« r may be called the
riddling bifurcation—analogously to the same type of bifu
cation known for systems with the chaotic attractor in inva
ant subspace@15#. Therefore, from our observations, we ma
conclude that the transition from a chaotic to a hypercha
attractor starts from a riddling bifurcation. Therefore, w
conclude that the chaos-hyperchaos transition is accom
nied by the existence of a control parameter interval (« r ;«s),
in which one observes unstable variable dimensiona
shown in Fig. 3. The following conditions apply.~i! For «
,« r all unstable periodic orbits embedded in the chao
attractor are of the saddle type.~ii ! «5« r is the control pa-
rameter value~of the riddling bifurcation! at which the first
repeller appears in the attractor.~iii ! In the interval (« r ,«b)
infinitely many unstable periodic orbits bifurcate from th
saddle to the repeller and new repellers appear in the cha
attractor. ~iv! The transition chaos-hyperchaos occurs
some parameter value«5«b inside the interval (« r ,«s); at
this parameter value the weights of saddles and repellers@de-
fined by Eq.~2!# are balanced.~v! «5«s is the control pa-
sa
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rameter value at which the last saddle disappears and f«
.«s all unstable periodic orbits embedded in the chao
attractor are repellers.

When the chaotic attractorA of a two-dimensional map
located at the invariant manifold undergoes a blowout bif
cation it is replaced by~i! an attractor at infinity, or~ii ! a
chaotic or~iii ! hyperchaotic attractor located out of the i
variant manifold, or~iv! periodic attractor. In cases~ii ! and
~iii ! we observe a sudden increase of the attractor’s dim
sion from a value smaller than or equal to 1 to a value s
nificantly larger than 1~but smaller than or equal to 2!. This
phenomenon is connected with the sudden increase of
dimension of the manifold on which the system evolves
fore and after the blowout bifurcation rather than with t
bifurcation mechanism. At the chaos-hyperchaos transi
we do not observe a sudden increase of the attractor’s dim
sion as in@6#. Other features of the blowout bifurcation, lik
the riddled basins~at least locally riddled@19#! and the
changes in the stability of an infinite number of unstab
periodic orbits embedded in the chaotic attractor, are pre
in the chaos-hyperchaos transition, so we have strong
dence that the mechanism of this transition is the same as
mechanism of the blowout bifurcation.

To summarize, we have shown here that the transit
from chaos to hyperchaos is a bifurcation that, like a blow
bifurcation in a system with symmetry, is mediated by
infinite number of unstable periodic orbits. Infinitely man
unstable periodic orbits become repellers in the neighb
hood of this transition. The whole process is initiated wh
one of the following conditions is fulfilled:~i! the saddle-
repeller bifurcation of a particular unstable periodic or
usually of low period,~ii ! the appearance of a repelling nod
in the saddle-node bifurcation, after which the chaotic attr
tor becomes riddled, or~iii ! the absorption of the repelle
~unstable node or focus! originally located out of the attrac
tor by the growing attractor, which leads to the occurrence
a riddled basin of the chaotic attractor.
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