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Chaos–hyperchaos transition in coupled Rössler systems
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Abstract

Many of the nonlinear high-dimensional systems have hyperchaotic attractors. Typical trajectory on such attractors is
characterized by at least two positive Lyapunov exponents. We provide numerical evidence that chaos–hyperchaos transition in
six-dimensional dynamical system given by flow can be characterized by the set of infinite number of unstable periodic orbits
embedded in the attractor as it was previously shown for the case of two coupled discrete maps. 2001 Elsevier Science B.V.
All rights reserved.

PACS: 05.45.+b

1. Introduction

Unstable periodic orbits (UPO’s) constitute the
most fundamental blocks of a chaotic system [1]. The-
oretically, the infinite number of UPO’s embedded in
a chaotic set provides the skeleton of the attractor
and allows the estimation of many dynamical invari-
ants such as the natural measure, the spectra of Lya-
punov exponents, the fractal dimension in the funda-
mental way [2]. Recently, UPO’s have been used in
the description of higher-dimensional dynamical phe-
nomena such as blowout bifurcation [3] and chaos–
hyperchaos transition (i.e., transition from the attractor
characterized by one positive Lyapunov exponent to
the attractor characterized by at least two positive ex-
ponents) [4]. It has been shown that chaos–hyperchaos
transition as well as blowout bifurcation is mediated
by an infinite number of UPO’s which become re-
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pellers in the neighborhood of the transition point. The
simultaneous existence of UPO’s with different num-
ber of unstable direction gives rise to the nonhyperbol-
icity known as unstable dimension variability and pro-
vides a possible dynamic mechanism for the smooth
transition through zero of second Lyapunov exponent.

Up to now, the description of chaos–hyperchaos
transition using UPO’s has been performed only for
the case of coupled discrete maps. In this Letter, we ar-
gue and provide numerical evidence that this descrip-
tion can be applied to the continuous dynamical sys-
tems (flows). We show that the balance of the appro-
priate weights of UPO’s orbits with one unstable di-
mension and UPO’s with at least two unstable dimen-
sion gives the approximation of chaos–hyperchaos
transition point.

2. The model

As an example consider two identical symmetri-
cally coupled Rössler systems
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Fig. 1. Two-dimensional projections onto(x1, y1) plane of the at-
tractor in system (1): (a) chaotic,a = 0.363; (b) hyperchaotic,
a = 0.368.

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

(1)ẋ3 = b+ x3(x1 − c)+ d(y3 − x3),

ẏ1 = −y2 − y3,

ẏ2 = y1 + ay2,

ẏ3 = b+ y3(y1 − c)+ d(y3 − x3),

where(x1, x2, x3, y1, y2, y3) ∈R6 are dynamical vari-
ables,a, b, c are system parameters andd is the coef-
ficient of coupling. It is well known that the Rössler
system develops continuous chaos through period-
doubling bifurcation cascade [6]. Since the Rössler
system has a foundation in the kinematics of chemical
reaction [7], it is natural to study the diffusive coupling
of two such systems [8].

In our numerical studies we took the following pa-
rameter valuesb = 2.0, c = 4.0, d = 0.25 and con-
sidera as a control parameter. With the increase of the
control parametera, system (1) reveals the transition
to hyperchaos [8] with a smooth passing of the sec-
ond Lyapunov exponent through zero ata = ah. An

Fig. 2. The variation of three largest Lyapunov exponents for the
coupled Rössler system (1) ford = 0.25. The smooth transition to
hyperchaos occurs atah ≈ 0.3673.

examples of chaotic attractors (two-dimensional pro-
jections) are shown in Figs. 1(a) and (b). The attractor
calculated fora = 0.363 is shown in Fig. 1(a). It is
“two-bundle” chaotic set with one positive Lyapunov
exponentλ1 ≈ 0.039. Fig. 1(b) shows the apparently
symmetrical attractor which exists fora = 0.368 and
has two positive Lyapunov exponentsλ1 ≈ 0.040 and
λ1 ≈ 0.002. Both attractors are not located in the in-
variant manifoldx = y.

The variation of three Lyapunov exponents versus
a is shown in Fig. 2 (for system (1) one of Lyapunov
exponents is always equal to zero). One can observe
a typical smooth transition to hyperchaos (similar
to this observed in [9,10]) atah ≈ 0.3673. For the
calculation of Lyapunov exponents we integrate the
original as well as a set of linearized equations and
reorthonormalize the difference vectors periodically
using a modified Gram–Schmidt algorithm (see [5]
and references therein).

Ordinary differential equations (1) have been solved
numerically using the fourth-orderRunge–Kutta meth-
od. The standard discretization of the time derivatives
in (1) allows the replacement of the original set of
ordinary differential equations by the corresponding
discrete map. Chaos–hyperchaos transition atah is a
topological event which is independent of the applied
discretization method and integration step. This al-
lows one to expect that the same mechanism of chaos–
hyperchaos transition which is known for two coupled
maps [4], can be observed in the discrete map associ-
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ated with Eqs. (1). Due to the problems of calculation
of unstable periodic orbits embedded in chaotic and
hyperchaotic attractors of higher- (larger than two) di-
mensional maps the extension of the results of [4] to
system (1) is not straightforward and this is the main
motivation of the current study.

3. Stability of low-periodic orbits embedded into
the attractor

In the following, we try to investigate stability of
low-periodic orbits embedded into the attractor of sys-
tem (1) when it undergoes chaos–hyperchaos tran-
sition. In order to find and classify these orbits we
use the Poincaré cross-section that is determined by
the following normal vectorn = (−3.75,1.84,−6.48,
1.75,−2.09,−0.10)and a base point with coordinates
P = (1.72,0.35,3.40,−1.27,−2.29,0.53). Vector n
was chosen along flow (1) at pointP . Fig. 3 shows
the image of the chaotic attractor in this map fora =
0.363. Note that system (1) has additionally a sym-
metric attractor which can be obtained by replacingx

with y.
In order to discover what periods of periodic so-

lutions are admitted for the given Poincaré map, we
shall consider symbolic dynamics of the map. It ap-

Fig. 3. 2D projection of the Poincaré map of system (1) onto the
plane(x1, x3), a = 0.363 (only one piece of two-piece attractor is
shown).

(a)

(b)

Fig. 4. Mapx1(n+1) versusx1(n) constructed for the Poincaré map
considered in Section 3: (a)a = 0.363; (b)a = 0.36713.A, B, and
C are domains in the phase space that represent possible partitions.

pears that it changes when the control parameter is
increased. Figs. 4(a) and (b) show possible cases. In
the first case we can split the phase space onto two
nonintersecting regionsA andB that maps into each
other:A→ B andB → A. Since we may obtain the
only possible periodic solutions, which correspond to
symbolic sequencesABAB . . . , and have even peri-
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Fig. 5. Graphs that are related to the symbolic dynamics in system
(1) with respect to the Poincaré map considered in Section 3:
(a) a = 0.363; (b)a = 0.0.36713.

ods 2n for any naturaln. The attractor in this case
has a form of two-bundle set shown in Fig. 1(a). With
the increase of parametera the shape of the attractor
changes and it begins to intersect the Poincaré map
at a new set of points. Thus, the topological structure
of the invariant set for the discrete map in the cross-
section changes, and we may observe also periodic cy-
cles with odd periods. With increasing parametera we
may observe also the periodic cycles with odd peri-
ods. More precisely, the symbolic dynamics now can
be constructed with the use of the partition{A,B,C},
cf. Fig. 4(b). Possible motions between the partitions
areA→ B, B →A, B → C, andC →A. The corre-
sponding graph is shown in Fig. 5(b). Minimal alpha-
bet in this case may be chosen, for example, as con-
sisting of two lettersD = ABC andE = AB. Thus,
we obtain fully connected graph, cf. Fig. 5(b). There-
fore, the admissible periodic cycles will correspond to
all symbolic sequences which consist of the lettersD

andE. Since letterD corresponds to three iterations
of the Poincaré map, andC to two iterations, the fol-
lowing periods for the map are allowed:p = 3n+ 2m,
wherem, andn are natural numbers,n+m �= 0, i.e.,
p > 1.

Having found the admissible periodsp, we applied
the shooting method [5,12] for locating periodic orbits
of system (1) first getting the initial guess by iterating
pth power of the Poincaré map. The periodsp � 24
were investigated. Letγ pi be a period-p orbit and
ν1, ν2 be the largest multipliers of this orbit. Herei
is an index labeling the orbit. Thenλ1 = ln(ν1)/T

andλ2 = ln(ν2)/T are the first two largest Lyapunov
exponents of the corresponding orbit of system (1) of a

periodT . Figs. 6(a) and (b) show the second Lyapunov
exponentsλ2(γ

p
i ,p) of the found orbits versusp

for two values of the control parameter:a1 = 0.364
anda2 = 0.367. The first value of the parameter was
chosen just after the moment when we first observe
doubly unstable low-periodic orbit embedded into the
attractor (we assumed that this bifurcation occurs at
a = ar ), i.e.,a1 � ar , while the second one isa2 � ah.
It can be seen that the number of doubly unstable
orbits increases and the number of cycles with one
unstable multiplier decreases when one approaches
chaos–hyperchaos pointah.

More precise characteristic may be obtained by
calculating weightsΛ2

p(a) andΛ1
p(a) that correspond

to doubly unstable cycles and the cycles with one
unstable multiplier, respectively, cf. [3,4,11]. They are
defined as follows:
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whereN1
p and N2

p are the numbers of cycles that
have one and two unstable directions, respectively.
The cycleγ pi weight is [13]
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,

whereLi is the product of the unstable multipliers
of ith cycle, i.e., eitherLi = ν1 or Li = ν1ν2 in the
case of a doubly unstable cycle.λ′

2(γ
p
i ,p)= (1/p)×

lnν2(γ
p

i ,p) is the second Lyapunov exponent of a
periodic orbitγ pi for the Poincaré map.

Following to [3], the zero value of the quantity
∆Λp(a) = Λ1

p +Λ2
p may serve as an approximation

of the blowout bifurcation point for the attractors
in invariant subspace. By the analogy to that ap-
proach and [4] we may approximate the chaos–hyper-
chaos transition point. Figs. 7(a)–(c) show variation
of ∆Λp(a) with a for p equal to 12, 20 and 24. For
all parameter values from 1000 to 2000 fixed points
of pth power of the Poincaré map were accumulated.
Although we cannot affirm that all periodic orbits
up to periodp are calculated, Fig. 7 shows clearly
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Fig. 6. The second Lyapunov exponentλ2(γ
p
i ,p) for low-periodic orbits embedded into the attractor of system (1) versusp: (a) a = 0.365;

(b) a = 0.367.

that approximately the same value of the weightsΛ1
p

andΛ2
p occurs near the chaos–hyperchaos transition

point. This is specially visible as one considers the
mean square approximation of∆Λp(a) shown in a
broken line. One can find that calculations forp =
24 (Fig. 7(c)) give better approximation of chaos–
hyperchaos transition pointah than calculations for
p = 20 (Fig. 7(b)) andp = 12 (Fig. 7(a)). Note that
the fluctuations of∆Λp(a) around zero before chaos–
hyperchaos transition which can be observed for larger
p (p = 20 (Fig. 7(b)) andp = 12 (Fig. 7(a))) are
due to the finite number of considered UPO’s. We
observed that increasingp these fluctuations decrease.

4. Conclusions

We have shown here that the transition from chaos
to hyperchaos in higher-dimensional dynamical sys-
tem given by a flow is a bifurcation that like in the
case of the coupled maps, is mediated by an infi-
nite number of unstable periodic orbits. In the neigh-
borhood of the transition point one observes the co-
existence of UPO’s with one (saddles which are typi-
cal for 3-dimensional chaotic systems) and at least two
unstable eigenvalues. This co-existence is responsible
for the occurrence of nonhyperbolic behaviour known
as unstable dimension variability and can explain the
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(a)

(b)

(c)

Fig. 7. Variation ofΛp(a) for (a) p = 12, (b) p = 20, and (c)
p = 24. The approximation of the chaos–hyperchaos transition
point by low-periodic orbits up to periodp = 12,20,24, the broken
lines show the mean-square approximations.

smooth passage through zero of the second Lyapunov
exponent at chaos–hyperchaos transition point. In a
system given by a flow despite the fact that it is im-
possible to determine all UPO’s of the given period the
balance of the appropriate weights of UPO’s of differ-
ent types can approximate the transition point in the
control parameter space.
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