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Abstract

We show that two identical chaotic oscillators can evolve in antiphase synchronization regime when noncontinuous coupling be-
tween them is introduced. As an example, we consider dynamics of two mechanical oscillators coupled by impacts. © 2001 Elsevier
Science Ltd. All rights reserved.

Coupled nonlinear oscillators are of great interest not only in engineering but also in biology, chemistry
and physics as well. ! Over the last decade, the field of synchronization of coupled chaotic systems has
advanced considerably due to the development of analytical methods and the rapid improvement in
experimental techniques [2-4]. Since then, synchronization has become one of the most active fields of
research in nonlinear dynamics.

In the paper [5], Cao and Lai showed that the new class of synchronism exists in chaotic systems with
symmetry. They pointed out that there exists such a decomposition of the state variables which allows the
slaving subsystem to synchronize with its replica in amplitude but with opposite sign for initial conditions
chosen from large regions in the phase space.

Consider two dynamical systems x = f(x) and y = f(y) where x,y € R". The x-system is synchronized
with the y-system if lim, . |x —y| — 0. x and y systems are synchronized with antiphase when x =
—y for t — oco. In a great number of papers it was shown that two chaotic systems can be synchronized
when continuous linear or nonlinear coupling between them is introduced.

In this brief report, we show that two identical antiphased forced chaotic systems can evolve in antiphase
synchronization regime when noncontinuous coupling between them is introduced. As an example, we
consider two mechanical oscillators coupled by impacts. Impact oscillators have been recently widely
studied [6-10] as they have some potential applications in mechanical and civil engineering. Such systems
exhibit Feigenbaum scenario [6-8] and intermittent routes to chaos sudden changes in the chaotic attractor,
Devil’s attractors [8] as well as the different types of grazing bifurcations [9,10].

Consider the system shown in Fig. 1. Two masses m are suspended on two identical springs with stiffness
coefficient k and two dampers with damping coefficient ¢. Periodic forces F sin w ¢ and F sin w,¢ acting on
both masses caused the chaotic oscillations of both oscillators. Consider that the forcing is in a counter
phase, i.e., wit = wyt + n and w; = w,. Assume that the distance between masses 1 and 2, / can slowly
decrease allowing impacts between masses 1 and 2.

* Corresponding author.
! There is a large literature on coupled oscillators. For a list of representative papers in various fields, see [1].
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Fig. 1. Model of two mechanical oscillators.

This system can be described by the following dimensionless equations:

¥ + ax +x; = b sin(n7), 0
1

¥y + axy +x3 = b sin(nt + 1),

where a = c(km)™"*x1,b = F /kx 3,5 = w/o, o = (km)"’% and X is a scale of x,,. Equations describing the
impacts based on the well-known Newton’s law base are as follows:

X -5 =8,
K- = -8,
X - i = — k(i — %), ()

where S = Sq/ma denotes the impulse of the force (Sy is dimensional impulse), ; is a restitution coefficient
and ()" describe the velocities before impacts.

In our numerical calculations, we consider a = 0.1,6 = 10,5 = 1 and k. = 0.9. We assumed that both
the oscillators evolve independently (without impacts) on their chaotic attractors and allowed the
distance between them to J to decrease slowly. Slowly decreasing é = //x one observes that the impacts
between masses 1 and 2 appear for 6 < d; = 7.242. Initially the oscillations of both masses are uncor-
related. Bifurcation diagram shown in Fig. 2(a) indicates that for different values of 6 both chaotic and
periodic behavior is possible. With the decrease of ¢, for d < d; = 6.945 we observe antiphase synchro-
nization regime x; = —x, which is robust in the large interval of J as can be seen in |x; + x,| versus ¢ plot
shown in Fig. 2(b). Such oscillations are shown in Figs. 3(a) and (b), where time series (Fig. 3(a)) and x,
versus x, plot (Fig. 3(b)) clearly indicates antiphase synchronized oscillations. Antiphase synchronization
of two oscillators occurs on the chaotic attractor which is different from the one of the impactless system,
but on the one which is located in the same region of the phase space, and it is preserved inside periodic
windows.

To summarize, we have shown that the impacts between oscillators can correlate their oscillations. This
phenomenon is robust and can be observed in a large class of mechanical impacting systems. It can also be
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Fig. 2. Bifurcation diagram of the system (1) with the dimensionless distance between oscillators 4, as a control parameter;
a=0.1,b=10,7=1 and k. = 0.9; (a) x; (black) and x, (grey) versus J; (b) |x; + x| versus .
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Fig. 3. Example of antiphased synchronized chaotic motion of two oscillators; a = 0.1,6 = 10,7 = 1,6 = 6.92, and &, = 0.9; (a) time
series of x; (black) and x, (grey); (b) x; versus x, plot.

observed in other nonsmooth systems, where the introduction of noncontinuous coupling can lead to the
antiphase synchronization of subsystems.
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