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Abstract

We show that chaotic attractors can have partially nearly riddled basins of attraction, i.e., basins which consist both of large open
sets and a set in which small open sets which belong to the basins of different attractors are intermingled. We argue that such basins are
robust for systems with the chaotic saddle located between at least two attractors and in the presence of noise cause the uncertainties
similar to those implied by riddled basins. © 2001 Elsevier Science Ltd. All rights reserved.

Over the last decade the field of coupled chaotic systems has advanced considerably due to the extensive
studies of chaos synchronization phenomenon [1-12]. Consider two identical chaotic systems x,.,; = f(x,)
and y,.1 = f(n), x,»y € R, evolving on asymptotically stable chaotic attractor A. It has been shown that
when some kind of coupling

Xn+1 :4f(xn) + €181 (xn7yn)7

1
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where €;, € R and g;2(x,,,) is a real function describing coupling with a property that g, = g, =0 for
X, = Yn, 1s introduced, x- and y-systems can be synchronized for some ranges of ¢, i.e., |x, — y,| — 0 as
n— oo.

In the synchronized regime the dynamics of the coupled system (1) is restricted to one-dimensional
invariant subspace x, = y,, so the problem of synchronization of chaotic systems can be understood as a
problem of stability of one-dimensional chaotic attractor 4 in two-dimensional phase space [13-22].

The basin of attraction f(A4) is the set of points whose w-limit set is contained in 4. In Milnor’s definition
[23] of an attractor, the basin of attraction need not include the whole neighborhood of the attractor, i.c.,
we say that 4 is a weak Milnor attractor if /(4) has a positive Lebesgue measure. For example, a riddled
basin [13-22] which has recently been found to be typical for a certain class of dynamical systems with one-
dimensional invariant subspace (like x,, = y, in the example (1)) has positive Lebesgue measure but does not
contain any neighborhood of the attractor. In this case the basin of attraction f/(4) may be a fat fractal so
that any neighborhood of the attractor intersects the basin with positive measure, but may also intersect the
basin of another attractor with positive measure.

The dynamics of system (1) is described by two Lyapunov exponents. One of them describes the evo-
lution on the invariant manifold x = y and is always positive. The second exponent characterizes evolution
transverse to this manifold and it is called transversal. If the transversal Lyapunov exponent is negative, the
set A is an attractor, at least in the weak Milnor sense.
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When the transversal Lyapunov exponent is negative, and there exist trajectories in the attractor A,
which are transversally repelling, 4 is a weak Milnor attractor with locally riddled basin, i.e., there is a
neighborhood U of A4 such that in any neighborhood ¥V of any point in A4, there is a set of points in V' N U
of positive measure which leaves U in a finite time. The trajectories which leave neighborhood U can either
go to the other attractor (attractors) or after a finite number of iterations be diverted back to A4. If there is
a neighborhood U of A such that in any neighborhood V of any point in U, there is a set of points of
positive measure which leave U and go to the other attractor (attractors), then the basin of 4 is globally
riddled.

As the conditions of the definition of riddled basins are very difficult to be fulfilled in practical engi-
neering systems, a definition of practical riddling has been introduced [24]. In practical riddling the
neighborhood U of the attractor A belongs to its basin (4). (4) is so small that any real perturbation
forces the trajectory out of U to the region of the phase space where the basin’s structure is so complex that
the fate of the trajectory, i.e., attractor 4 or co-existing attractor B (attractors B, C, . ..) cannot be predicted.
Systems with practically riddled basins in the presence of noise with given finite level have the same
property as sytems with riddled basins.

The problem of chaos synchronization is not the only theoretical problem studied in coupled chaotic
systems. The other interesting problem is chaos-hyperchaos transition [24-29], i.e., transition from the
attractor with one positive Lyapunov exponent to the attractor with at least two positive exponents. In [29]
some similarities between this transition and the phenomena associated with the loss of chaos synchroni-
zation have been shown. One of these similarities is the occurrence of a locally riddled basin of the chaotic
attractor close to the transition to hyperchaos.

In this paper we show that the other type of basin of attraction, the basin which contains open sets but
with a peculiar property, can occur in coupled systems with at least two co-existing attractors. This pe-
culiarity is caused by the existence of a region in the phase space in which small open sets which belong to
the basins of different co-existing attractors are intermingled. These sets are open as preimages of the large
open sets located in the neighborhoods of the attractors (for example its immediate basins), but on the other
hand so small that in the relatively small (in comparison with the noise level) neighborhood of any point in
them there are points which belong to the basin of different attractor. We give evidence that such basins,
which we called partially nearly riddled, are robust for systems with the chaotic saddle located between at
least two attractors.

As an example we consider the dynamics of two coupled logistic maps:

Xui1 = A— X+ e(x2 — )2,

s 2 2 2 (2)
Yor1 = A -V + 6()’,, - xn)7

where x,, y, are the dynamical variables, and A and the coupling coefficient € are the controlling parameters

of the system.

The primary reason that we choose to illustrate our results using two-dimensional maps is that
for such systems, there exists a procedure, the proper-interior-maximum triple (PIM-triple) procedure
[30], for computing an arbitrarily long trajectory on a chaotic saddle with high precision. We are
not aware of any procedure that can be utilized to compute trajectories on chaotic saddles in higher
dimensions.

Our map (1) is noninvertable and its attractor presents an invariant chaotic set which is enclosed in the
so-called chaotic area (according to the terminology of Mira [31]). This chaotic area is an invariant region
of the two-dimensional phase space bounded typically by a finite number of segments of the so-called
critical lines, which are obtained from the iterations of the set Ly = {(x,y) : DF(x,y) = 0} i.e., curves where
Jacobian DF vanishes, where F is the map given by (1).

In our numerical study we take A = 1.56 and consider e € [0.036,0.042]. At these parameter values,
system (2) has either two co-existing chaotic attractors or one hyperchaotic attractors as shown in
Figs. 1(a) and (b) inside the chaotic area. Fig. 1(a) shows chaotic attractors A and B for ¢ = 0.0390 and
Fig. 1(b) presents hyperchaotic attractor H for ¢ = 0.0385. Chaotic attractors are characterized by one
positive Lyapunov exponent while hyperchaotic ones by two positive Lyapunov exponents for typical
trajectories in the phase sapce. At e = 0.03854, one observes the transition from chaos to hyperchaos.
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Fig. 1. Chaotic (4 and B), hyperchaotic (H) attractors and chaotic saddle S of the map (2) for A = 3.8; (a) ¢ = 0.0390, (b) ¢ = 0.0385.

Additionally to attracting sets 4 and B or H for e € [0.0383,0.0420] there exists a chaotic nonattracting
set — chaotic saddle S. Typical trajectory on this chaotic saddle calculated by PIM-tripe algorithm is
characterized by two positive Lyapunov exponents. Although system (2) has symmetry, its attractors
shown in Figs. 1(a) and (b) are not located at the invariant manifold, so this system can be used for the
description of the general properties of basins of attraction in the neighborhood of chaos—hyperchaos
transition.

Consider basins of attraction characteristic for the chaotic attractors 4 and B. An example of such
basins for e = 0.04 is shown in Fig. 2(a) and at the enlargement in Fig. 2(b). Basins of attractors 4 (green)
and B (red) are indicated, respectively, in blue and pink while navy blue indicates the basin of the attractor
at infinity. These figures clearly show that basins of both chaotic attractors are characterized both by open
sets (blue or pink) and a nearly riddled set (where blue is intermingled with pink). In this set small open sets
which belong to the basins of attractors 4 and B are intermingled. Nearly riddled set is bounded by critical
curves. This new type of basins of attraction we called as partially nearly riddled. Partially riddled basins are
robust for e > 0.0854, i.e. before chaos—hyperchaos transition but they disappear at this transition as can be
seen in Fig. 2(c) (blue indicates the basin of hyperchaotic attractor H and navy blue indicates the basin of
the atractor at infinity).

It should be mentioned here that inside the considered e-interval, various periodic attractors with very
small basins can exist in different small e-subintervals. As they are not important in the creation of partially
nearly riddled basins they are not discussed here.

The creation of partially nearly riddled basins is connected with the existence of the chaotic saddle and at
least two attractors in the phase space. As it can be seen in Figs. 1(a) and 2(a) and (b), the chaotic saddle S
is located between open sets which create basins of two co-existing attractors A4 and B. Trajectories evolving
on the saddle after some time have to go to one of the attractors 4 or B. Due to the symmetry in the system,
attractors 4 and B are equally probable as a final goal of any trajectory from the saddle S. Relatively small
(but not infinitely small) noise can change the fate of such a trajectory. This uncertainty creates the partially
nearly riddled set in the phase space, where the chaotic saddle or its preimages exist. In the case of Figs. 1(b)
and 2(c), the chaotic saddle S still exists but there is only one attractor H at the chaotic area of system (2),
so the trajectories originally evolving on S have to approach the attractor H and the nearly riddled set is not
created in the phase space.

Partially nearly riddled basin can also be created in the case when only one attractor exists inside the
chaotic area, after the destruction of this area in the boundary crisis of the chaotic saddle with the boundary
of the attractor in infinity. In this case the basin of the attractor in infinity invades the original attractor
initially located inside the chaotic area.
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Fig. 2. Basin of attraction of chaotic (4 and B), hyperchaotic (H) attractors and chaotic saddle S of the map (2) for A = 3.8; (a,b)
e = 0.0390, basins of attractors A4 (green) and B (red) are indicated, respectively, in blue and pink while navy blue indicates the basin of
the attractor at infinity, (c) ¢ = 0.0385, blue indicates the basin of hyperchaotic attractor H (green) and navy blue indicates the basin of
the attractor at infinity.

In summary, we describe a new class of basins of attraction, namely the partially nearly riddled basin
which consists of both open and nearly riddled sets. We outline a mechanism for the occurrence of such
basins in systems with co-existing attractors and a chaotic saddle. The existence of partially nearly riddled
basins analyzed in this paper is a high-dimensional phenomenon that can be expected in systems such as
coupled map lattices or coupled ordinary differential equations, which arise naturally when one discretizes a
nonlinear partial differential equation.

Acknowledgements

This work has been supported by KBN (Poland) under Grant No. PB0962/T07/98/15.



T. Kapitaniak | Chaos, Solitons and Fractals 12 (2001) 2363-2367

References

[1] Fuijsaka H, Yamada T. Prog Theor Phys 1983;70:1240.

[2] Afraimovich VS, Verichev NN, Rabinovich MI. Radiophys Quantum Electron 1986;29:795.
[3] Pecora L, Carroll TS. Phys Rev Lett 1990;64:821.

[4] Pecora L, Carroll TS. IEEE Trans Circuits Syst 1991;38:453.

[5] Anishchenko VS, Vadivasova TE, Postnov DE, Safanova MA. Radioeng Electron 1991;36:338.

[6] Endo T, Chua LO. Int J Bifur Chaos 1991;1:701.
[7] De Sousa M, Lichtenberg AJ, Lieberman MA. Phys Rev A 1992;46:7359.
[8] Lai Y-C, Grebogi C. Phys Rev E 1993;47:2357.
[9] Kapitaniak T. Phys Rev E 1994;50:1642.
[10] Maistrenko Y, Kapitaniak T. Phys Rev E 19961;54:6531.
[11] Astakhov V, Shabunin A, Kapitaniak T, Anishchenko V. Phys Rev Lett 1997,79:1014.

[12] Astakhov V, Hasler M, Kapitaniak T, Shabunin A, Anishchenko V. Phys Rev E 1998;58:5620.

]
]
[13] Maistrenko Y, Maistrenko V, Popovich A, Mosekilde E. Phys Rev Lett 1998;80:1638.
[14] Ashwin P, Buescu J, Stewart 1. Phys Lett A 1994;193:126.
[15] Ott E, Sommerer JC. Phys Lett A 1994;188:39.
[16] Ott E, Sommerer JC, Alexander JC, Kan I, Yorke JA. Physica D 1994;76:384.
[17] Alexander JC, Kan I, Yorke JA, You Z. Int J Bif Chaos 1992;2:795.
[18] Heagy JF, Carroll T, Pecora L. Phys Rev Lett 1994;73:3528.
[19] Kapitaniak T. J Phys A 1995;28:63.
[20] Lai Y-C, Grebogi C, Yorke JA, Venkataramani SC. Phys Rev Lett 1996;77:55.
[21] Maistrenko Y, Kapitaniak T, Szuminski P. Phys Rev E 1997;56:6393.
[22] Kapitaniak T, Maistrenko Y, Stefanski A, Brindley J. Phys Rev E 1998;57:R6253.
[23] Milnor J. Commun Math Phys 1985;99:177.
[24] Blazejczyk-Okolewska B, Brindley J, Kapitaniak T. Chaos, Solitons & Fractals 2000;11:2511.
[25] Rossler OE. Phys Lett A 1976;57:397.
[26] Kapitaniak T, Steeb W-H. Phys Lett A 1991;152:33.
[27] Kapitaniak T. Phys Rev E 1993;47:R2975.
[28] Harrison MA, Lai Y-Ch. Phys Rev E 1999;59:R3799.
[29] Kapitaniak T, Maistrenko Yu, Popovich S. Phys Rev E 2000;61:367.
[30] Nusse HE, Yorke JA. Physica D 1989;36:137.
]

2367

[31] Mira Ch, Gardini L, Barugola A, Cathala J-C. Chaotic dynamics in two-dimensional non-invertible maps. Singapore: World

Scientific; 1996.



