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Abstract

Stability and oscillation characteristics of two-dimensional axially moving web have been investigated. The application of
one-dimensional beam-like models of the web allows the identi1cation of instability regions and the estimation of the critical
speed. For the beam material two di3erent models, i.e., Kelvin–Voigt and B#urgers have been considered. The numerical
solutions of full non-linear and linearized equations have been compared. The e3ects of axially travelling speed and the
internal damping on dynamical stability of axially moving web have been studied in details. Our numerical studies of Kelvin–
Voigt and Burger’s models show that both models give similar results for small values of internal damping and can be
used to describe the dynamics of axially moving webs made from materials with internal damping coe7cient smaller than
3 × 10−5. For the materials with larger damping coe7cient the B#urgers model gives more reliable results. ? 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The continuous development of mechanics and its
engineering applications in our days have increased
remarkably the interest in non-linear stability anal-
ysis of structures. Particularly a great number of
studies consider two general models, the systems
under followed loading [1–10] and elastic continua
translating at high speed [11–20]. In the follow-
ing dynamical behavior of the second model is
studied.

Elastic continua translating at high speed such as
band saw blades, magnetic types, paper webs, plastic
sheets, 1lms, transmission cables are present in vari-
ous industrial applications. Generally, axially moving

∗ Corresponding author.
E-mail address: kmarynow@ck-sg.p.lodz.pl (K. Marynowski).

continuum in the form of thin, Cat rectangular shape
material with small Cexural sti3ness is called a web.
Webs are moving at high speed, for example, in pa-
per production the paper webs are transported with
longitudinal speeds of up to 3000 m=min. Above the
critical speed one can expect various dynamical in-
stabilities mainly of divergent and Cutter type. These
instabilities can decrease the quality of products and
their performance. The excessive oscillations of a
computer tape degrade the signal and can a3ect the
data storage. The instability of a band saw results
in low surface quality, unsatisfactory cutting perfor-
mance and leads to the loss of raw materials. In paper
production, the machines instabilities, resonance os-
cillations and the Cutter of the web can cause the
wrinkling or even a breaking of the web. To ensure
that the operating system is under stable working
conditions, full analysis of its dynamics has to be
performed. Complete knowledge of the dynamical
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Fig. 1. Critical speeds scr versus dimensionless sti3ness  for various webs [20].

behavior allows the prediction and control of insta-
bilities.

The results of the dynamical analysis of the axi-
ally moving web shows that it is impossible to obtain
the mathematical model, which is valid for the whole
range of transport speeds. It has been necessary to in-
troduce a number of simpli1cations in the considered
models. The validation of such models is restricted to
speci1c intervals of transport speed and usually they
describe only the most signi1cant features of the dy-
namical behavior.

In modeling the axially moving webs one can
use one-dimensional beam theory (e.g. [24]) or
two-dimensional plate theory (e.g. [20]). Historically,
also the string theory has been used but nowadays it
is considered to give too rough approximation of the
real phenomena as it has not considering plate sti3-
ness of the web. Although the plate theory gives the
most accurate description of the physical phenomena
that occur in the web, it is very complicated mathe-
matically and requires time-consuming calculations.
Our previous studies show that for the large class
of the practically important webs with small Cexural
sti3ness the beam theory gives equally accurate re-
sults as the plate theory [20]. In particular, the plot of
critical speed scr of the web (de1ned as the ratio of the
transport speed to the wave speed) versus dimension-
less plate sti3ness  (de1ned as Eh3=[12(1− �2)Pl2])
is shown in Fig. 1.

One can observe that for the large range of sti3ness
 and the slenderness ratio l=b (length over width of

the web) the results of the beam and the plate theories
are very close.

The other important problem one can meet in con-
sidering axially moving web is how to model web ma-
terial. Particularly, how to model the internal damping
of the material and this is the main problem, which we
stress in this paper. Generally, two di3erent models,
namely Kelvin–Voigt [22] and B#urgers [23] are com-
monly used and we try to answer the question, which
of them better describes the dynamics of the web. Ad-
ditionally, we compare the results obtained from the
analysis of the linearized equations with the results of
the integration of the full non-linear equations.

The paper is organized as follows. In Section 2
basing on the beam theory, we derive the equations
of motion of the axially moving web. Section 3 de-
scribes di3erential constitutive equations obtained
from two-parameter Kelvin–Voigt and four parameter
B#urgers models. In Section 4 we give full mathemat-
ical models of the web with Kelvin–Voigt (Section
4.1) and B#urgers damping (Section 4.2). In Section
5, we discuss the results of our numerical investiga-
tions of two-parameter Kelvin–Voigt (Section 5.1)
and four-parameter B#urgers (Section 5.2) models.
The conclusions are presented in Section 6.

2. Equations of motion

A viscoelastic axially moving web of the length l
is considered. The web moves at axial velocity c. The
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Fig. 3. The beam model of axially moving web.

geometry of the system and the introduced co-ordinates
are shown in Fig. 2.

The problem of transverse oscillations of the axi-
ally moving continua in a state of uniform initial stress
was investigated [20]. In the case of thin web, the
results of earlier studies show that the beam models
can approximate the dynamical behavior of the web
(Fig. 3). The application of this model gives the fol-
lowing equation of motion in the z direction:

�Az(−w;tt − 2cw;xt − c2w;xx) + Mx;xx

+ (Nxw;x); x = 0; (1)

where: Az the cross section area of the beam, Mx bend-
ing moment, Nx perturbated axial stress, � mass den-
sity of the beam.

The uniform initial tension force P provides the
required initial stress for the models’ materials. The
non-linear strain component in x direction is related
to the displacement w by

� (x; t) = 1
2 w2

; x(x; t): (2)

The one-dimensional constitutive equation of a di3er-
ential type material obeys the relation

�� = ��; (3)

 γ2
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Fig. 4. (a) Kelvin–Voigt and (b) B#urgers models.

where � and � are di3erential operators de1ned as

� =
R∑

j=0

aj
dj

dtj
; � =

P∑
j=0

bj
dj

dtj
: (4)

3. Di�erential constitutive equations

The models of internal damping introduced by
Kelvin–Voigt and B#urgers are shown in Fig. 4.

For the two-parameter viscoelastic model of
material—Kelvin–Voigt element (Fig. 4a), the di3er-
ential constitutive equation can be written as

a0� = b1�; t + bo�; (5)

where

a0 = 1; b0 = E; b1 = �: (6)

The four-parameter viscoelastic model of material
in the form of the B#urgers element (Fig. 4b) was taken
into account. The di3erential constitutive equation of
the model material can be written as

a2�;tt + a1�;t + a0� = b2 �; tt + b1�; t ; (7)
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where

a2 = �1 �2; a1 = (E1 + E2) �1 + E1�2;

a0 = E1 E2; b2 = E1 �1 �2; b1 = E1E2 �1: (8)

4. Mathematical models of the systems

4.1. Two-parameter model of material

To obtain mathematical description of the viscoelas-
tic beam model one should multiply Eq. (1) with op-
erator �. The bending moment M is given

M = −E Jz w;xx − Jz � w;xxt : (9)

Using Eqs. (2), (5) and (6) one receives

w;tt + 2cw;xt + c2w;xx +
EJz
�Az

w;xxxx +
Jz�
�Az

wxxxxt

− P0

�Az
w;xx − 3

2
E
�
w2

; xw;xx

− 2
�
�

(w;xw;xtw;xx + cw;xw2
; xx)

− �
�

(w2
; xw;xxt + cw2

; xw;xxx) = 0: (10)

The boundary conditions

w(0; t) = w(l; t) = 0; w;xx(0; t) = w;xx(l; t) = 0:(11)

Let the dimensionless parameters be

z =
w
hz

; � =
x
l
; s =

c
cf

= c

√
Az�
P0

;

! = t
cf
l

=
t
l

√
P
Az�

; cf =

√
P
Az�

: (12)

The substitution of Eq. (12) into Eq. (10) gives the
dimensionless non-linear equation of the viscoelastic
beam model motion

z;!! + 2sz;�! + (s2 − 1)z;�� + sz;� + �z;����

+"z;����! − 3
2
# z2

; �z;�� − $s(2z2
; ��z;� + z2

; �z;���)

− $(2z;�z;�!z;�� + z2
; �z;��!) = 0 where (13)

" =
Jz�

l3
√
P�Az

; � =
EJz
Pl2 # =

Eh2
zAz

Pl2 ;

$ =
�h2

zAz

l3
√
P�Az

: (14)

The problems represented by Eq. (13) together with
boundary conditions (11) have been solved using the
Galerkin method. The following 1nite series represen-
tation of the dimensionless transverse displacement
has been assumed

z(�; !) =
n∑

i=1

sin(i' �) qi(!); (15)

where qi(!) is the generalized displacement.
Substituting Eq. (15) into Eq. (13) and using

orthogonality condition one determines the set of
ordinary di3erential equations. For n = 3 the set of
ordinary equations is shown in Appendix (Eq. (A.1)).

4.2. Four-parameter model of material

To obtain mathematical description of the system
with the four-parameter model of the material one
should multiply Eq. (1) with operator � and using
Eqs. (7) and (8) receives

�a0w;tt + 2�a0cw;xt + c2�a0w;xx + �a1w;ttt

+ 3�a1cw;xtt + 3�a1c2w;xxt + �a1c3w;xxx

+�a2w;tttt + 3�a2cw;xttt + 3�a2c2w;xxtt

+�a2c3w;xxxt + a0r1w;xxxx + (a1r1 + a0r2)w;xxxxt

+ (a2r1 + a1r2)w;xxxxtt + a1r1cw;xxxxx

+ c(a2r1 + a1r2)w;xxxxxt + a2cr2w;xxxxxtt

+ a2r2w;xxxxttt − �0w;xx − �0a1w;xxt

−�0a1cw;xxx − �0a2w;xxtt − �0a2cw;xxxt

= 2b1w;xw;xxw;xt + 2b1cw;xw2
; xx

+ 2b2w;xw;xxw;xtt + 2b2cw;xw;xxw;xxt

+ b1w2
; xw;xxt + b1cw2

; xw;xxx

+ b2w2
; xw;xxtt + b2cw2

; xw;xxxt (16)
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where

r1 =
E0Jz
Az

; E0 =
E1E2

E1 + E2
; r2 =

Jz�2

Az
;

�0 =
P
Az

:

The boundary conditions are shown in Eq. (11).
The substitution of Eq. (12) into Eq. (16) gives the
dimensionless non-linear equation of the viscoelastic
beam model motion

z;!!!! + 3sz;�!!! + (3s2 − 1)z;��!! + s(s2 − 1)z;���!

+ g1z;!!! + 3g1sz;�!! + g1(3s2 − 1)z;��! + g2z;!!

+ 2g2sz;�! + g2(s2 − 1)z;�� − g1s(s2 − 1)z;���

− g2g3z���� − (g1g3 + g2g4)z����!

− (g3 + g1g4)z����!! − g1g3sz�����

− (g3 + g1g4)z�����! − g4sz����!! − g4z����!!&

= g5(2z;�z;��z;�! + 2sz;�z2
; �� + z2

; �z;��!

+sz2
; �z;���) + g6(2z;�z;��z;�!!

+ 2sz;�z;��z;��! + z2
; �z;��!! + sz2

; �z;���!); (17)

where

g1 =
(
E1 + E2

�2
+

E1

�1

)
l
cf

; g2 =
E1E2l2

�1�2c2
f
;

g3 =
E1Jz
Pl2 ; g4 =

Jz�2cf
Pl3 ;

g5 =
E1E2h2

zA
2cf�

P2�2l
; g6 =

E1Ah2
z

Pl2 : (18)

The problems represented by Eq. (17) together with
boundary conditions (11) have been solved using the
Galerkin method. The 1nite series representation (15)
of the dimensionless transverse displacement has been
assumed. Substituting Eq. (15) into Eq. (17) and using
orthogonality condition one determines the set of or-
dinary di3erential equations. For n= 3 the set of ordi-
nary equations is shown in the Appendix (Eq. (A.2)).

5. Numerical results

Numerical investigations have been carried out for
the beam model of the steal web. Parameters data:

length l=1 m, width b=0:2 m, thickness h=0:0015 m,
mass density �=7800 kg=m3, Young’s modulus along
x: Ex = 0:2 1012N=m2, initial stress N0 = 2500 N=m,
n= 3. Initial conditions: q1 = 1, q1; t = 0; : : : ; q3; ttt = 0.
The Runge–Kutta method was used to integrate or-
dinary di3erential equations and analyze the dynamic
behavior of the system.

5.1. Two-parameter model of material

At 1rst, the linearized damped system was inves-
tigated. To show the dynamic behavior of the web
natural damped oscillations of the 1rst generalized co-
ordinate q1 for di3erent values of axial speed s of the
beam model were investigated. In subcritical region of
transport speeds (s¡ scr) one can observe free Cexural
damped vibrations around trivial equilibrium position
(Fig. 5). In supercritical transport speeds (s¿ scr) for
small internal damping the web experiences divergent
instability (Fig. 6) and next Cutter instability (Fig. 8).
Between these two instability regions there is the sec-
ond stability domain. The existence of the second sta-
ble region is dependent on the internal damping of the
web material. When the internal damping increases
the width of the second stable region decreases. The
time history of the 1rst generalized coordinate q1 in
the second stable region is shown in Fig. 7. The lo-
cation of instability regions of the linearized system
(A.1) with two-parameter model of axially moving
material is shown in Fig. 9.

Fig. 5. The phase portrait (a) and time history of the solution of
the linearized system (A.1); (s = 0, " = 10−4).
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Fig. 6. The phase portrait (a) and time history of the solution of
the linearized system (A.1); (s = 1:4, " = 10−4).

Fig. 7. The phase portrait (a) and time history of the solution of
the linearized system (A.1); (s = 1:41, " = 10−5).

Next the non-linear system with the two-parameter
model of axially moving material was investigated.
Bifurcation diagram of the non-linear system for the
internal damping coe7cient " = 10−5 is shown in
Fig. 10. The dimensionless transport speed s has been
used as the bifurcation parameter. One can observe su-
percritical bifurcation at the transport speed s = scr =
1:12. For s¡ scr only one attractor exists (q1 = 0)
and for s¿ scr this critical point becomes repaller
and one can observe two attractors (non-zero critical
points). The phase portraits and time histories of the
solutions of the non-linear system (A.1) are shown in
Figs. 11–13.

Fig. 8. The phase portrait (a) and time history of the solution of
the linearized system (A.1); (s = 1:45; " = 10−5).

It is worth to note that the analysis of the non-linear
system does not show the existance of various forms
of instability regions of the linearized system (A.1).
Though the analysis of the linearized system predicts
exponentially growing oscillations in the divergence
instability region of transport speeds, non-linear
damped oscillations which tend to the stable critical
point occur (Fig. 11). At the transport speeds above
the 1rst divergence instability region of the linearized
system the undamped non-linear system experiences
global motion between two critical points (Fig. 12).
For di3erent values of internal damping and initial
conditions the system may reach various equilibrium
positions in the supercritical transport speeds region
(Fig. 13).

5.2. Four-parameter model of the material

To allow the direct comparison of the results ob-
tained for the Kelvin–Voigt and B#urgers models in
the numerical studies of the second one we used E1 =
E2 = 2E; �1 = �2 = 2�.

5.2.1. Linearized system
The stability and instability regions calculated for

the linearized system (A.2) are shown in Fig. 14. The
B#urgers model results indicate that in the range of
supercritical transport speed only for smaller values
of internal damping coe7cient ("¡ 3 × 10−5) the
dynamical behavior of the web is similar to the one
obtained by the Kelvin–Voigt model (compare with
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Fig. 9. Instability regions of the linearized system with two-parameter model (Kelvin–Voigt element) of axially moving material .

Fig. 10. Bifurcation diagram of the non-linear system with
two-parameter model (Kelvin–Voigt element) of axially moving
material (" = 10−5).

Fig. 11. The phase portrait (a) and time history of the solution of
the non-linear system (A.1); (s = 1:3, " = 10−4).

Fig. 12. The phase portrait (a) and time history of the solution of
the non-linear system (A.1); (s = 1:54, " = 0).

Fig. 13. The phase portrait (a) and time history of the solution of
the non-linear system (A.1); (s = 1:54; " = 10−5).
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Fig. 14. Instabilities regions of the linearized system with four-parameter model (B#urgers element) of axially moving material.

Fig. 15. The phase portrait (a) and time history of the solution of
the linearized system (A.2); (s = 0:93; " = 10−4).

Fig. 9). Both models con1rm the existence of the sec-
ond stability region located between the divergence
and the Cutter instability regions. Phase portrait and
time history of oscillations in this region, are shown
in Fig. 17.

For the larger values of internal damping the sys-
tem loses its stability due to the Cutter instability.
This is the signi1cant di3erence between both con-
sidered models, as the Kelvin–Voigt model does not
allow the identi1cation of this instability region. The
critical value of the transport speed decreases with

Fig. 16. The phase portrait (a) and time history of the solution of
the linearized system (A.2); (s = 1:1; " = 8:9 10−4).

the increase of damping coe7cient ". The phase por-
traits and time histories of the system response in both
Cutter instability regions are shown in Figs. 15, 16
and 18.

5.2.2. Non-linear system
Bifurcation diagram of the non-linear system with

four-parameter model of axially moving material for
the internal damping coe7cient " = 10−5 is shown
in Fig. 19. For s¡ scr = 1:12 only one attractor
exists (q1 = 0).For s¿ scr at 1rst one can observe
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Fig. 17. The phase portrait (a) and time history of the solution of
the linearized system (A.2); (s = 1:43; " = 1:8 10−5).

Fig. 18. The phase portrait (a) and time history of the solution of
the linearized system (A.2); (s = 1:42; " = 10−4).
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Fig. 19. Bifurcation diagram of the non-linear system with
four-parameter model (B#urgers element) of axially moving ma-
terial (" = 10−5, I-large limit cycle region, II-small limit cycle
region).

the region of transport speeds where unbounded so-
lutions occur. Above this region the non-linear os-
cillations occur which are characterize by one large
limit cycle (region I in Fig. 19). In the second di-
vergence instability region of the linearized system
one can observe the non-linear oscillations which are
characterize by two small limit cycles (region II in
Fig. 19).

The phase portraits and time histories of the system
response (the 1rst generalized co-ordinate - q1) of the
non-linear system (A.2) for the small values of inter-
nal damping co-e7cient ("¡ 3 × 10−5) are shown
in Figs. 20–25. Numerical studies of the non-linear

Fig. 20. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1; " = 2 10−5).

Fig. 21. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:2; " = 10−5).
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Fig. 22. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:42; " = 2 10−5).

Fig. 23. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:55; " = 2 10−5).

system (A.2) show that in the subcritical range of
transport speed s one observes that the increase of s
causes the decrease of the frequency of the natural
oscillations. At the critical speed the system exhibits
the divergent instability (Fig. 21). Compare the pre-
vious cases of Kelvin–Voigt (A.1) and linearized
B#urgers (A.2) model the existence of the second sta-
bility region has not been con1rmed (Fig. 22). For
larger values of the transport speed one observes the
region of Catter instability. The characteristic system
response in this region is shown in Fig. 23. With
further increase of the transport speed the large limit
cycle oscillations around two equilibria are devel-
oped (Fig. 24). This type of oscillations is similar to

Fig. 24. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:68; " = 2 10−5).

Fig. 25. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:75; " = 10−5).

the one observed in Kelvin–Voigt model (Fig. 12).
The small limit cycle oscillations can be observed in
Fig. 25.

The threshold value of the non-dimensional
co-e7cient of the internal damping in the case of
the considered steel web corresponds to the value
of � = 1:7 × 107 kgm−1 s−1. The experimental esti-
mations of this co-e7cient indicates the larger value
� ≈ 108 kgm−1 s−1 [21].

Bifurcation diagram of the non-linear system for
the internal damping coe7cient " = 10−4 is shown
in Fig. 26. For s¿ scr = 0:75 at 1rst the region of
transport speeds where unbounded solutions occurs.
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Fig. 26. Bifurcation diagram of the non-linear system with
four-parameter model (B#urgers element) of axially moving mate-
rial (" = 10−4).

Fig. 27. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 0:8; " = 8:9 10−5).

For larger values of the transport speed one observes
the co-existing limit cycle oscillations.

The phase portraits and time histories of the sys-
tem response (the 1rst generalized co-ordinate - q1)
of the non-linear system (A.2) for larger values of in-
ternal damping co-e7cient ("¿ 3×10−5) are shown
in Figs. 27–32. At the critical transport speed the
system loses the stability due to the Cutter instabil-
ity as it can be seen in Fig. 27. The increase of the
transport speed and the transition to the divergence
instability region of the linearized system (A.2) do
not show the qualitative change of the response char-
acter. In this range of transport speed values initially

Fig. 28. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:15; " = 10−4).

Fig. 29. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:45; " = 5 10−5).

Fig. 30. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:77; " = 10−4).
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Fig. 31. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 1:9; " = 10−4).

Fig. 32. The phase portrait (a) and time history of the solution of
the non-linear system (A.2); (s = 2:0; " = 10−4).

one observes the oscillations with growing amplitude
which later are replaced by nonoscillatory increase
of the system deCection as can be seen in Fig. 28.
Similar dynamical behavior of the non-linear system
(A.2) can be observed in the region of Catter insta-
bility of the linearized system. In non-linear case the
oscillations around the trivial equilibrium (q1 = 0) are
replaced by the limit cycle oscillations around noncen-
tral equilibria. The birth of such a limit cycle is shown
in Figs. 29 and 30. Phase portraits and time histories
of the system response showing the stable limit cycle
around two di3erent equilibria are shown in Figs. 31
and 32.

6. Conclusions

Dynamic investigations of beam-like models of the
axially moving web with constant axial stress are car-
ried out in this paper. The beam model material as
the Kelvin–Voigt element (two-parameter model) and
the B#urgers element (four-parameter model) are con-
sidered. The general forms of di3erential equations of
transverse oscillations of the systems are derived to-
gether with the di3erential constitutive law for their
rheologic models.

The numerical investigations have been carried
out for the steal web. The analysis of the linearized
equations with two-parameter Kelvin–Voigt material
model shows that in the subcritical range of transport
speed the increase of this speed causes the decrease
of the frequency of the natural oscillations. At critical
speed the system exhibits the divergent instability.

For supercritical transport speeds and small inter-
nal damping, the web experiences divergent and Cut-
ter instabilities. Between these two instability regions
there is the second stability area. The width of this re-
gion depends on the internal damping of the web ma-
terial. When the internal damping increases the width
of the second stable region decreases more and 1nally
disappears.

The dynamic analysis of the non-linear damped sys-
tem with constant axial stress shows in supercritical
transport speed region the non-trivial equilibrium po-
sitions bifurcate from the straight con1guration of the
web and global motion between the co-existing equi-
librium positions occurs. At the same transport speed
for di3erent values of the internal damping the system
may reach various equilibrium positions.

Four parameters B#urgers model and two parame-
ters Kelvin–Voigt one give dynamically similar re-
sults only for small values of the internal damping
("¡ 3×10−5). As the experimental estimation of the
internal damping in the steel web indicates larger val-
ues of " so for the description of the dynamical be-
havior of such a web one has to consider non-linear
B#urgers model. In such a model the critical transport
speed decreases with an increase of internal damp-
ing and the system loses stability as the result of
Cutter.

Inside the instability regions one can observe dif-
ferent dynamical behavior depending on the consid-
ered model. Non-linear Kelvin–Voigt model shows
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the existence of the stable limit cycle in both regions
of divergence instability while the non-linear B#urgers
model indicates such a behavior only in the second
region.

Generally, we can state that results of the non-linear
stability analysis simplify the qualitative description of
the dynamic behavior of the considered system. Both
linear and non-linear stability analysis results coincide
at the estimation of the 1rst instability of the system,
and di3er in the description of the behavior in the un-
stable region. Numerical studies of Kelvin–Voigt and
B#urgers models show that both models give similar
results for small values of internal damping and can
be used to describe the dynamics of axially moving
webs made from materials with internal damping co-
e7cient smaller than 3×10−5. For the materials with
larger damping coe7cient the B#urgers model is more
appropriate.

Appendix A

The set of ordinary di3erential equations of
the viscoelastic beam model with two-parameter
Kelvin–Voigt model of material (n = 3):

#q1 = (s2 − 1)'2q1 − �z'4q1 + (16=3)sq̇2 − bzq̇1

+ (8=3)bzsq2 − bw'4q̇1 − a1[(3=8)q3
1 + 3q1q2

2

+ (27=4)q1q2
3 + (9=8)q2

1q3 + (9=2)q2
2q3]

+ a2s[(848=21)q1q2q3 + (2992=35)q2q2
3

+ (112=15)q2
1q2 + (1408=105)q3

2]

− a2[(3=4)q2
1q̇1 + (3=4)q2

1q̇3 + (3=2)q1q̇1q3

+ 3q2
2 #q3 + 6q2q̇2q3 + 4q1q2q̇2

+ 2q̇1q
2
2 + (9=2)q̇1q

2
3 + 9q1q3q̇3];

#q2 = 4(s2 − 1)'2q2 − 16�z'4q2 − (16=3)sq̇1

+ (48=5)sq̇3 − bzq̇2 − (8=3)bzsq1

+ (24=5)bzsq3 − 16bw'4q̇2(!)

− a1[3q2
1q2 + 6q3

2 + 27q2q2
3 + 9q1q2q3]

+ a2s[(8=15)q3
1 + (44712=385)q3

3

+ (1952=105)q1q2
2 + (1016=35)q1q2

3

+ (936=35)q2
1q3 + (1568=15)q2

2q3]

+ a2[ − 6q1q2q̇3 − 6q1q̇2q3 − 12q2
2q̇2

− 6q̇1q2q3 − 4q1q̇1q2 − 36q2q3q̇3

+ (27=2)q1q3q̇3 − 2q2
1q̇2 − 18q2

3q̇2];

#q3 = 9(s2 − 1)'2q3 − 81�z'4q3 − (48=5)sq̇2 − bzq̇3

− (24=5)bzsq2 − 81bw'4q̇3 − a1[(3=8)q3
1

+ (243=8)q3
3 + (9=2)q1q2

2 + (27=4)q2
1q3

+ 27q2
2q3] + a2s[ − (10656=105)q1q2q3

+ (78192=385)q2q2
3 + (144=35)q2

1q2

− (128=15)q3
2] − a2[(3=4)q2

1q̇1 + (9=2)q2
1q̇3

+ 4q1q̇1q2 + (243=4)q2
3q̇3 + 9q1q̇1q3

+ 2q1q2q̇2 + 3q̇1q
2
2 + 18q2

2q̇3 + 36q2q̇2q3];

(A.1)

where

a1 =
Eh2

zAz'4

Pl2 ; a2 =
�h2

zAz'4

l3
√
PAz�

:

The set of ordinary di3erential equations of the
viscoelastic beam model with four-parameter B#urgers
model of material (n = 3):
˙:::q1 = −('4g4 + g1)

:::
q1 + 8s

:::
q2 − ['2(1 − 3s2) + g2

+'4(g3 + g1g4)] #q1 + (8g1s + 128'4g4s=3) #q2

− ['2g1(1 − 3s2) + '4(g1g3 + g2g4)]q̇1

+ [32'2s(1 − s2)=3 + 16g2s=3

+ 128'4s(g3 + g1g4)=3]q̇2

− ['2g2(1 − s2) + '4g2g3)q1

+ [32'2g1s(1 − s2)=3 + 128'4g1g3s=3]q2

+ g5'4(−3q2
1q̇1=8 − 3q1q3q̇1=4 − 3q2q3q̇2

− 3q2
1q̇3=8 − 3q2

2q̇3=2 − 2q1q2q̇2 − 9q1q3q̇3=2

− q2
2q̇1 − 9q2

3q̇1=4) + g5'5s(2:13q3
2

+ 1:19q2
1q2 + 6:54q1q2q3 + 40:74q2q2

3)

+ g6'4(−3q2
1 #q1=8 − 3q1q3 #q1=4 − 3q2q3 #q2

− 3q2
1 #q3=8 − 3q2

2 #q3=2 − 2q1q2 #q2 − 9q1q3 #q3=2

− q2
2 #q1 − 9q2

3 #q1=4) + g6'5s(0:17q1q2q̇1

+ 1:09q2q3q̇1 + 1:02q2
1q̇2 − 0:87q1q3q̇2

+ 2:13q2
2q̇2 + 6:86q2

3q̇2 + 6:33q1q2q̇3

+ 6:77q2q3q̇3);
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˙:::q2 = − (16'4g4 + g1)
:::
q2 − 8s

:::
q1 + 72s

:::
q3=5

− [4'2(1 − 3s2) + g2 + 16'4(g3 + g1g4)] #q2

− (8g1s + 8'4g4s=3) #q1 − [4'2g1(1 − 3s2)

+ 16'4(g1g3 + g2g4)]q̇2 + (72g1s=5

+ 1944'4g4s=5) #q3 + [216'2s(1 − s2)=5

+ 48g2s=5 + 648'2s(g3 + g1g4)]q̇3

− [8'2g1s(1 − s2)=3 + 8'4g1g3s=3]q1

− [8'2s(1 − s2)=3 + 16g2s=3

+ 8'4s(g3 + g1g4)=3]q̇1 − [4'2g2(1 − s2)

+ 16'4g2g3)q2 + [216'2g1s(1 − s2)=5

+ 1944'4g1g3s=5)q3 + g5'4(−2q1q2q̇1

− 3q2q3q̇1 − q2
1q̇2 − 9q1q3q̇2 − 6q2

2q̇2

− 9q2
3q̇2 − 3q1q2q̇3 − 18q2q3q̇3)

+ g5'5s(0:08q3
1 + 18:49q3

3 + 2:96q1q2
2

+ 4:64q1q2
3 + 4:26q2

1q3 + 16:64q2
2q3)

+ g6'4(−2q1q2 #q1 − 3q2q3 #q1 − 3q1q3 #q2

− 6q2
2 #q2 − q2

1 #q2 − 9q2
3 #q2 − 3q1q2 #q3

− 18q2q3 #q3) + g6'5s(0:08q2
1q̇1 + 1:09q1q3q̇1

− 1:31q2
2q̇1 − 2:14q2

3q̇1 + 4:27q1q2q̇2

− 2:68q2q3q̇2 + 3:17q2
1q̇3 + 19:35q2

2q̇3

+ 18:49q2
3q̇3 + 6:71q1q2q̇3);

˙:::q3 = − (81'4g4 + g1)
:::
q3 − (72=5)s

:::
q2 − [9'2(1 − 3s2)

+ g2 + 81'4(g3 + g1g4)] #q3 − (72g1s=5

+ 384'4g4s=5) #q2 − [9'2g1(1 − 3s2)

+ 81'4(g1g3 + g2g4)]q̇3 − [96'2s(1 − s2)=5

+ 48g2s=5 + 384'4s(g3 + g1g4)=5]q̇2

− [9'2g2(1 − s2) + 81'4g2g3)q3

− [96'2g1s(1 − s2)=5 + 384'4g1g3s=5]q2

+ g5'4(−3q2
1q̇1=8 − 3q2

2q̇1=2 − 9q1q3q̇1=2

− 3q1q2q̇2 − 18q2q3q̇2 − 243q2
3q̇3=8 − 9q2

1q̇3=4

− 9q2
2q̇3) + g5'5s(−1:36q3

2 + 0:65q2
1q2

+ 16:15q1q2q3 − 62:31q2q2
3) + g6'4(−3q2

1 #q1=8

− 3q2
2 #q1=2 − 9q1q3 #q1=2 − 3q1q2 #q2 − 18q2q3 #q2

− 243q2
3 #q3=8 − 9q2

1 #q3=4 − 9q2
2 #q3)

+ g6'5s(1:09q1q2q̇1 − 4:29q2q3q̇1 − 0:44q2
1q̇2

− 1:36q2
2q̇2 + 13:64q1q3q̇2 − 21:07q2

3q̇2

+ 6:76q1q2q̇3 + 36:98q2q3q̇3); (A.2)

where

g1 =
(
E1 + E2

�2
+

E1

�1

)
l
cf

; g2 =
E1E2l2

�1�2c2
f
;

g3 =
E1Jz
Pl2 ; g4 =

Jz�2cf
Pl3 ;

g5 =
E1E2h2

zA
2cf�

P2�2l
; g6 =

E1Ah2
z

Pl2 :
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