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Abstract

We present how to avoid dangerous situations that occur during a robot periodic motion and are caused by different

kinds of vibrations. Theoretical analysis of stability regions and of the ways of inducing vibrations during a stability

loss of periodic trajectories of the manipulator motion, based on the theory of nonlinear systems is developed. Based on

the bifurcation diagrams and Poincare maps, an identification of stability areas has been carried out. To illustrate our

method theoretically and numerically, a model of the RRP-type manipulator has been considered.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the case of stationary robots, the designed trajectories of a manipulator gripping device motion that result from

the technological processes being carried out exhibit most often a character of periodic motion cycles. From the

viewpoint of safety, an analysis of the behaviour of the dynamical system such as a manipulator that performs a pe-

riodic motion and is subjected to motion perturbations is an interesting issue. To this effect, the motion stability is

understood as insensitivity of the trajectory of the dynamical system motion to motion perturbations. In this paper, an

investigation of dynamical characteristics in the vicinity of the periodical trajectory, based on Poincare maps of vari-

ational equations, has been proposed. A Poincare map is understood as a discrete mapping in the form of (n� 1) of the

dimensional space that divides the phase space into two subspaces and where (n) is a dimension of the dynamical

system. In order to achieve this goal, the equations of Poincare maps [12] have been written and they have been em-

ployed in nonlinear equations of perturbations. In the case of manipulators, an application of a Poincare map is

convenient due to the fact that the position of the boundary cycle in the phase space is known. Because of this, it is

relatively easy to define a Poincare map in the phase space. An analysis of stability regions makes the linearization of

maps possible and constitutes an initial stage of an analysis of manipulator vibrations, that is to say, of manipulator

bifurcation types. Owing to a possibility of occurrence of unpredictable vibrations due to a stability loss, this issue

seems to be very important from the point of view of work safety. Sample stability regions of the manipulator, con-

ditions under which a stability loss takes place and ways in which a stability loss of the manipulator periodic motion due

to perturbations occurs have been presented.

Problems involved in an analysis of stability of periodic trajectories of dynamical systems are based on the Floquet

and Lapunov theories [3,5,7,9,12]. The Floquet theory deals with linear differential equations with periodic coefficients.

In turn, using the Lapunov theorem, we can state the stability of periodic solutions to the nonlinear equation on the

basis of an analysis of the linear variational equation. The Lapunov theorem does not, however, inform what new
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solutions appear or disappear and what their stability is like, i.e., it does not characterise a bifurcation type. It follows

from the fact that this theorem employs an analysis of the linearized equation. In order to determine a type of bi-

furcation, thus it is indispensable to investigate the nonlinear issue in the vicinity of the parameter value that corre-

sponds to the boundary value of Floquet multiplicators. In typical cases, the investigation of behaviour of Floquet

multiplicators that are obtained from the linear analysis allows for determination of a type of bifurcation of the periodic

orbit. In other words, in order to identify a bifurcation type, it is sufficient to consider the forms of solutions to the

linear variational equation that correspond to the transition of Floquet multiplicators through an elementary circle. As

an example, methods of mechanical systems stability analysis based on different conditions can be found in [1,6,10].

Our task is to develop a model of the manipulator, a model of the electric and mechanical drive and to determine

critical values of parameters of the nonlinear model for which a change in stability, i.e., bifurcation, takes place. Both

the regions of stability and kinds of vibrations that can occur during a perturbation of the manipulator periodic motion

are interesting and important. On the basis of the manipulator variational equation and employing the theory of

Poincare maps, it will be possible to determine the regions of stability of a periodic trajectory of the manipulator

gripping device motion. An analysis of stability regions performed for an MAR manipulator is presented in Section 4.

2. Model of the manipulator and of electric and mechanical driving systems

To simplify the motion equations and to clarify the usage of the method, a model of the manipulator (Fig. 1) with

rigid links has been assumed. In the mathematical model of the manipulator with the vector n of generalised coordinates

of links, the potential energy has been written as a sum of the potential energy of links, an object being manipulated and

the flexibility of kinematic pairs. The potential energy of flexibility has been written as a function of resultant flexibility

of rolling, three-dimensional and slow-speed kinematic pairs [11]. The energy of dissipation of the kinematic pair has

been expressed by means of a resultant coefficient of energy dissipation [4] as a function of square relative velocity of

kinematic pair links.

The electric and mechanical model of the driving system of the manipulator covers torsional flexibilities, viscous

damping and resistance to friction in driving systems. It has been assumed in these considerations that each manip-

ulator link is driven by an independent driving system (Fig. 2) and consists of an electric motor, a brake, a mechanical

gear and driving shafts [13]. A stator of the driving motor of the ith driving system is connected with the ith )1 link, i.e.,
it is a part of this link. Energy losses due to mechanical clearances in driving units and gyroscopic effects between

motors and manipulator links have been neglected.

A vector of generalised coordinates of the manipulator is expressed as

�qqm ¼ ½�qq; �qqs�T ð1Þ

where �qq is a vector of generalised coordinates of manipulators links, whereas �qqs is a vector of generalised coordinates of

driving motors.

Fig. 1. Kinematics scheme of the manipulator.
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A rotor of every driving motor has its own frame of reference and an inertia tensor related to this system. In general,

an inertia tensor of the driving motor rotor of the ith driving system is

Iwi ¼
Ixxi �Ixyi �Ixzi
�Ixyi Iyyi �Iyzi
�Ixzi �Iyzi Izzi

2
4

3
5 ð2Þ

where Iabi are mass centrifugal moments of inertia of the ith rotor with respect to planes perpendicular to the axes a and

b, a ¼ fx; y; zg, b ¼ fx; y; zg and a 6¼ b, whereas Iaai are mass moments of inertia of the ith rotor with respect to main

axes of inertia; a ¼ fx; y; zg.
The kinetic energy of the ith manipulator link, which is a sum of the kinetic energy of the link, the kinetic energy of

the rotor of the driving motor of the ith driving system, and the kinetic energy of rotating elements of the ith system of

power transfer, is equal to

Eki ¼ 1
2

 _qqTi 
 DðqiÞ 
 _qqi þ 1

2

 ð _qqsi Þ

T 
 Iwi 
 _qqsi þ 1
2

 ð _qqsi Þ

T 
 Ini 
 _qqsi ð3Þ

where DðqiÞ is a tensor of inertia of the ith link along with the rotor mass and the elements of the iþ 1th and ith system

of power transfer assigned to the link i, as well as of the electric motor stator of the iþ 1th driving system being a part

of the link, according to Fig. 2. In general, the kinetic energy of the manipulator equals to

Ek ¼ 1
2

 ½ _qqT 
 DðqÞ 
 _qqþ ð _qqsÞT 
 Izr 
 _qqs� ð4Þ

where DðqÞ––matrix of inertia of the manipulator links ðn� nÞ; Iw, In––matrix of inertia of rotors of driving motors and

shafts and rotating elements of reduction gears and brakes, reduced to the axis of generalised coordinates, corre-

spondingly, ðn� nÞ; Izr ¼ Iw þ In––moment of inertia of rotors of driving motors, power transfer shafts, rotating ele-

ments of reductions gears and brakes, reduced to the axes of respective generalised coordinates. The tensor of inertia

reduced to the axis of the generalised coordinate qi of the ith link, of power transfer shafts and rotating elements of

reduction gears and breaks can be expressed as

In ¼ diag½In1; . . . ; Inn� ð5Þ

where In1, Inn depend on the assumed design of the systems of power transfer. The reduced moment of inertia of the

driving system of the ith degree of freedom for the start-up is equal to

Izr ¼ diag g1s 
 n21 
 Izz1

"
þ g1s 


Xk
ðn1k 
 Ikn1Þ; . . . ; gns 
 n2n 
 Izzn þ gns 


Xk
ðgnk 
 IKnnÞ

#
ð6Þ

where gik––mechanical efficiency corresponding to the kth element of the ith drive; gis––mechanical efficiency of the

driving motor of the ith driving system; Ikni––moment of inertia of the kth element of the driving system of the ith degree

of freedom, reduced to the axis of the generalised coordinate of the ith link. In the case of braking, we have

Izr ¼ diag
n21 
 Izz1

g1s

"
þ
Xk Ikn1

g1s 
 g1k
; . . . ;

n2n 
 Izzn
gns

þ
Xk Iknn

gns 
 gnk

#
ð7Þ

The potential energy of the manipulator has been expressed as a sum of the potential energy of links, an object being

manipulated, elements of power transfer systems and flexibility of kinematic pairs. The potential energy of flexibility of

driving systems is described by a matrix of resultant torsional stiffnesses of power transfer systems that have been

reduced to generalised coordinates of manipulator links [11]. This energy described as a function of generalised

Fig. 2. Schematic diagram of the driving system of the manipulator link.
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coordinates of links and rotors of motors reflects resultant matrices of stiffness of individual power transfer systems that

are reduced to their corresponding generalised coordinates of the manipulator.

Thus, the potential energy of elements of power transfer systems is equal to

Epð�qqÞ ¼
Xn
i¼1

Xl
j¼1

EnpijðT1i�1; T1iÞ ¼
Xn
i¼1

Xl1
j¼1

EnpijðT1i�1Þ þ
Xn
i¼1

Xl¼l1þl2
j¼l1þ1

EnpijðT1iÞ ð8Þ

where Enpij––potential energy of the jth element of the ith manipulator driving system; l––number of elements of the ith
driving system, whose potential energy is considered in the equation of the manipulator potential energy; ij denotes the
jth element of the ith driving system; l1; l2––number of elements of the driving system of the link i assigned to the link

i� 1 and i, respectively; T1i�1; Ti1––matrices of transformations according to the Denavit–Harterberg notation. Hence,

the Lagrange equations of the manipulator, reduced to the axis of the generalised coordinate qi of the ith link, assume

the form

DðqÞ 
 €qqþ Cðq; _qqÞ þ Kðq� qsÞ ¼ 0

Izr 
 €qqs � Kðq� qsÞ ¼ Q1

ð9Þ

where DðqÞ––matrix of inertia of the manipulator ðn� nÞ; Cðq; _qqÞ––matrix of Coriolis forces, centrifugal forces and

gravitational moments ðn� nÞ; K––diagonal matrix of reduced stiffnesses of driving systems ðn� nÞ; Izr––diagonal
matrix of reduced inertias of driving systems; Q1––vector of driving quantities, reduced to the link axle.

It has been assumed that viscous friction in the driving system is a sum of viscous friction in the driving motor and

viscous friction in the driving system, reduced to the axle of the driving motor. Having reduced the equations to the

driving motor axle, we obtain

Izr 
 €hh þ N�1 
 K 
 ðN�1 
 h � qÞ þ B 
 _hh ¼ Q2 ð10Þ

where N––diagonal matrix of reduction gear ratios of driving systems ðn� nÞ; Izr ¼ Izr=N 2––diagonal matrix of inertia

of driving systems of the manipulator, reduced to driving axles of motors ðn� nÞ; €hh––vector of angular accelerations of
rotors of driving motors ðn� 1Þ; Q2––vector of driving quantities of links, reduced to generalised coordinates of rotors

of driving motors ðn� 1Þ; B––diagonal matrix of viscous damping in driving systems ðn� nÞ that has been expressed as

follows

B ¼ diag fw;w1

"
þ
Xwi
l¼1

f lw;u1; fw;wi þ
Xwi
l¼1

f lw;ui; . . . ; fw;wn þ
Xwi
l¼1

f lw;un

#
ð11Þ

where wi––number of elements of the ith driving system that are considered in determination of viscous friction; fw;wi––
coefficient of viscous friction in the ith driving motor;

Pwi

l¼1 f
l
w;un––sum of coefficients of viscous damping of individual

elements of the power transfer system, reduced to driving axles of the motor.

Generally, the equations of motion of the manipulator in which electric and mechanical driving systems are taken

into account assume the following form

½M � 
 ½€qqm� þ ½C� 
 ½ _qqm� þ ½K� 
 ½qm� þ ½G� ¼ ½Q� ð12Þ

where ½M �––matrix of inertia of the manipulator, composed of the moment of inertia of links, an object being ma-

nipulated and moments of inertia of driving systems that are reduced to the axis of the ith generalised coordinate; ½C�––
matrix of effects of gyroscopic forces, centrifugal forces and energy dissipation; ½K�––matrix of stiffness; ½G�––column

matrix of gravity forces; ½Q�––column matrix of driving quantities; ½qm�––column matrix of vectors of generalised co-

ordinates of the manipulator and driving systems.

2.1. Trajectory of motion, kinematics and dynamics of the manipulator

A selection of the trajectory of motion of the manipulator gripping device, Fig. 3, has followed from the necessity of

ensuring the continuity of components of vectors of velocity and acceleration of the point P of the gripping device along

the whole trajectory of its motion and from the fact that stops and start-ups of the manipulator have been taken into

consideration, Fig. 5. Additionally, the assumed trajectory shows a possibility of occurrence of bifurcation of the

motion trajectory (Figs. 7 and 8). An analysis of kinematics and dynamics that has consisted in solving reverse tasks

makes it possible to define sets of configuration coordinates of the manipulator for which the assigned positions and
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orientations of the robot working link can be obtained and to determine the driving quantities of individual degrees of

freedom as a function of parameters of the trajectory of the gripping device motion, Figs. 7 and 8.

The Denavit–Hartenberg notation has been used to describe the kinematics. Four configurations of the manipulator

that allow for any flat, vertical trajectory of motion of the gripping device have been found. Two of them are possible

for the assumed kinematic structure of the manipulator. The manipulator configurations that permit the assumed

trajectory are presented in Fig. 4. A numerical algorithm that solves a simple task of the dynamics of a manipulator

with gears is to be found in [4,8].

Figs. 5–8 have been made for the calculation initial angle of the manipulator gripping device position on the motion

trajectory b0ðt ¼ 0Þ ¼ 225� (Fig. 3) where _bb0 ¼ x0 ¼ 0:3 rad/s is an angular velocity of the motion of the calculation

parameter b0 along the gripping device motion trajectory with respect to the beginning of the frame of reference X1Y10.
The angle b0 is a calculation parameter (uniformly variable in time) of the angle of the position of the manipulator

gripping device centre on the motion trajectory in the local frame of reference X1Y1 of the trajectory. This parameter

allows for determination of the angle of the position of the point P of the gripping device on the motion trajectory and

its angular velocity (Fig. 6) for control systems. The parameter b0 is useful for control systems.

3. Stability of periodic trajectories of the manipulator

The issue of stability of a periodic motion becomes important when the gripping device motion becomes unstable for

some parameters of the manipulator model. Let us assume that the vector of generalised coordinates �qqðtÞ ¼
½q01ðtÞ; . . . ; q0nðtÞ�T is a periodic solution to the equation of the manipulator motion and let us perturb this solution. A

Fig. 4. Mathematical solution to the equations of manipulator positions.

Fig. 3. Geometrical parameters of the trajectory of motion of the manipulator gripping device.
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perturbation of the manipulator periodic solution is to be understood as a perturbation of the ith generalised coor-

dinate/coordinates that is/are determined from the conditions of the robot nominal motion. In the suggested way of

stability analysis, variational equations and the theory of Poincare maps have been employed. An analysis of stability

regions makes the linearization of maps possible and constitutes an initial stage of the analysis of manipulator vi-

Fig. 6. Angular velocity of the gripping device motion versus time.

Fig. 5. Resultant velocity and acceleration of the point P of the gripping device versus its position on the trajectory of motion.

Fig. 7. Generalised coordinates q2, q3 as a function of the angle of the position of the point P of the gripping device on the motion

trajectory. A bifurcation point of the trajectory of generalised coordinates.
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brations. A distance of the solution of the manipulator perturbed motion from the solution of the nominal motion, i.e.,

of the periodic motion, is defined by a variable yðtÞ.
Deflections of positions from the nominal motion and their time derivatives that appear in the mechanical system of

the manipulator are compensated for by changes in values of driving torques of the nominal motion. An ability of

mutual compensation of motion perturbations and changes in driving torques of individual degrees of freedom is

connected with the assumed model of the control system of the robot motion. Let us write the vector of compensating

driving quantities as D.
Substituting the vector of perturbations and compensation into the equations of motion of the manipulator, we

obtain the variational equations

_yy ¼ A 
 �yy þ B 
 D þ Nðy; _yyÞ ð13Þ

�yy, N 2 R2n. Matrix f includes nonlinear terms of equations of motion perturbations. A degree of nonlinearity of Eq. (13)

depends on the form of the series expansion of trigonometric functions. As a result, we obtain differential equations of

perturbations with periodic coefficients.

In the case under consideration of the manipulator during the motion of the second and third degree of freedom,

whereas the first degree is stationary, we obtain [4]

_yyi ¼ aijyj þ binDn þ c2;ijkyjyk þ d2;ijmyj _yym þ c3;ijklyjykyl þ d3;ijkmyjyk _yym ð14Þ

where i; j; k; l ¼ 1; . . . ; 4; j6 k6 l, m ¼ 2; 4; n ¼ 2; 3; Dn––compensating drive; aij, bin––linear part of the equations of

motion; c2;ijk, d2;ijm, c3;ijkl, d3;ijkm––matrices of nonlinearity of the equations of motion. The matrices aij, bin, c2;ijk, d2;ijm,
c3;ijkl, d3;ijkm depend on the nominal motion of the manipulator. The compensation vector is a set of parameters of the

control system, owing to which compensation of deflections of the gripping device positions is possible. These pa-

rameters reflect a compensating driving quantity.

D ¼ ½control system 1; . . . ; control system n�T ð15Þ

In general, the vector of parameters that have to be investigated as far as their effect on the motion stability is

concerned can be presented as follows

�ee ¼ ½kinematics of gripping device motion; control parameters; trajectory parameters�T ð16Þ

The problem of stability of the periodic motion of the gripping device is formulated as an analysis of stability of the

matrix of equations of the perturbed motion as a function of �ee.

�yy ¼ 0 ð17Þ

The Poincare map in the vicinity of (17) is defined as

P½�yy þ yðt ¼ 0Þ� ¼ y½yðt ¼ 0Þ; T � ð18Þ

where

yðt ¼ 0Þ ð19Þ

Fig. 8. Nominal driving quantities of electric motors of the periodic trajectory.
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are the initial conditions of the motion, and T is period [5].

In order to describe the stability of the periodic solution more precisely, relationship (18) in the vicinity of (17) has

been expanded in the following series

P½yðt ¼ 0Þ� ¼ oy
oyðt ¼ 0Þ 
 yðt ¼ 0Þ þ 1

2

 o2y
oy2ðt ¼ 0Þ 
 ðyðt ¼ 0Þ; yðt ¼ 0ÞÞ

þ 1

6

 o3y
oy3ðt ¼ 0Þ 
 ðyðt ¼ 0Þ; yðt ¼ 0Þ; yðt ¼ 0ÞÞ þ 
 
 
 ð20Þ

Subsequent partial derivatives in Eq. (20) are calculated as a function of the period of the manipulator motion as partial

derivatives of variational equations (13) written in the form

_yy ¼ f ðy; tÞ ð21Þ

If we assume a close neighbourhood of column matrix (17), then a linear analysis of stability in the vicinity of (17)

can be assumed as an approximation. Thus, we deal with a linearized discrete mapping in the form of a Poincare map in

the vicinity of the periodic trajectory. The analysis of stability of column matrix (17) is reduced then to the analysis of

eigenvalues

EðKÞ ¼ oy
oyðt ¼ 0Þ ð22Þ

In order to perform this analysis, we have to generate a matrix AðtÞ composed of derivatives of the equations of the

perturbed motion as a function of parameters of perturbations in the following form

AðtÞ ¼ ofiðyi0Þ
oyi

ð23Þ

for the initial conditions (19). The eigenvalues of the perturbation equations in the vicinity of initial conditions (19) can

be determined from the determinant

det½AðtÞ � K 
 I � ¼ 0 ð24Þ

where K––vector of eigenvalues; I––unit matrix.

The roots of Eq. (24), called characteristic multipliers of the periodic solution, determine stability of the periodic

solution of the manipulator. Transforming Eq. (24), we obtain in the vicinity of initial conditions (19)

K4 þ A1 
 K3 þ A2 
 K2 þ A3 
 K þ A4 ¼ 0 ð25Þ

where

A1 ¼ � of2
oy2

� of4
oy4

A2 ¼
of2
oy2


 of4
oy4

� of2
oy4


 of4
oy2

� of4
oy3

� of2
oy1

A3 ¼
of2
oy2


 of4
oy3

� of2
oy3


 of4
oy2

þ of2
oy1


 of4
oy4

� of2
oy4


 of4
oy1

A4 ¼
of2
oy1


 of4
oy3

� of2
oy3


 of4
oy1

The knowledge of characteristic multipliers makes it possible to obtain a spectrum of Lapunov exponents [5,12] of

the periodic trajectory

ki ¼
ln jKij
T

ð26Þ

where T is a period of the gripping device motion along the trajectory of its motion. The periodic solution is stable if

values of Lapunov exponents are negative or equal to zero.

4. Determination of stability regions of the MAR manipulator

The MAR robot manipulator (Fig. 1) whose main data are presented in Table 1, has been subjected to a sample

numerical analysis in order to determine stability regions. The eigenvalues are calculated for varying parameters of

velocity of the gripping device motion along the motion trajectory and for control parameters. The stability of matrix

(17) is determined by absolute values of eigenvalues of Eq. (22), described with respect to 1 [5,12]. Thus, matrix (17) is
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asymptotically stable when all eigenvalues of Eq. (22) have their absolute values smaller than 1. If at least one ei-

genvalue has an absolute value higher than 1, then the motion of the system is unstable. In the case when all eigenvalues

have their absolute values smaller than 1 or equal to 1, then the system is on the stability threshold.

Below, a few sample diagrams of stability regions for the angle b ¼ 315�, which is the angle of the gripping device

position on its motion trajectory (Fig. 3) and for the coefficients of damping and flexibility in kinematic pairs equal to

zero, are shown. The data concerning the motion trajectory of the gripping device are presented in Table 2.

A linear control version has been considered, where the coefficient Us is a controlled variable and the coefficients a, b
are the coefficients of proportionality. The coefficient a is connected with second drive system instead coefficient b with

third drive system.

In Fig. 9, a stability region as a function of the control coefficient Us and the angular velocity of the gripping device

motion along its trajectory for the coefficients a ¼ �45:6, b ¼ �0:003 is depicted. One can see the ranges of parameters

for which the system is stable. In turn, Figs. 10 and 11 show stability regions as a function of the coefficients a and b for
the control coefficient Us ¼ 1:51 and the angular velocity equal to 0 and 0.1 rad/s, respectively. A decrease in the size of

the stability region with an increase in the angular velocity of the gripping device motion along the trajectory of its

Table 2

Parameters of the manipulator gripping device motion

Parameters of the gripping device motion trajectory Q (m) L (m) K (m) R (m)

– 0.05 0.231 0.5 0.05

Table 1

Physical and geometrical data of the manipulator under analysis

Number of the manipulator link 1 2 3

Link mass mi (kg) 12.7 12.7 15

Link length Li (m) 0.18 0.18 0.42

Position of the centre of gravity in corresponding local coordinate system (m)

x �L1=2 �L2=2 0

y 0 0 0

z 0 0 �L3=2
s3 ¼ 0:18 m

Fig. 9. Stability region as a function of the control variable Us and the kinematics of the gripping device motion. (Dark area: unstable

region.)
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motion can be observed. In Fig. 12, we can see a stability region as a function of the quantity L of the position of

the motion trajectory (Fig. 3) and the velocity of motion of the gripping device along the trajectory of its motion. The

following values of the control coefficients have been assumed: Us ¼ 1:51, a ¼ �45:6, b ¼ �0:003. An influence of the

position of the trajectory of motion of the gripping device on the manipulator stability region is visible.

As a result of the theoretical analysis, it has been found that there is a possibility of occurrence of three types of

bifurcation that are connected with a loss of stability of the manipulator motion. Vibrations that occur in the system

accompany each kind of bifurcation. Because of damage that such phenomena can cause, we tend to eliminate a

possibility of their occurrence through maintaining the operation of driving systems within ranges of a stable motion.

Figs. 13 and 14 present sample spectra of Lapunov exponents for the data included in Figs. 9 and 12, respec-

tively. One can see stability and instability ranges of the manipulator as a function of various parameters of the ma-

nipulator.

Fig. 10. Stability region as a function of proportionality coefficients in the control systems a and b. (Dark area: unstable region.)

Fig. 11. Stability region as a function of proportionality coefficients in the control systems a and b. (Dark area: unstable region.)
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5. Conclusions

The analysis of stability regions of the periodic motion trajectory, has been carried out on the basis of Poincare maps

for non-autonomous, nonlinear systems of differential equations. The presented analysis of the periodic trajectory

stability makes it possible to analyse the regions of parameters in which the system operation is advantageous. A

phenomenon of instability of motion of manipulator links shows a possibility of occurrence of unpredictable vibrations

of individual robot links that can endanger the safety in the manipulator vicinity. The method can be used to investigate

the manipulator stability for various trajectories of the gripping device motion, different parameters of control systems

of driving systems and parameters of the manipulator gripping device motion along its motion trajectory.

Fig. 12. Stability region as a function of the dimension L of the position of the motion trajectory of the gripping device and the

kinematics of its motion.

Fig. 13. Spectrum of Lapunov exponents for the data presented in Fig. 9 and x0 ¼ 0:1 rad/s.
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