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In this paper, we define a simple criterion of the synchronization threshold in the set of coupled chaotic
systems(flows or maps) with diagonal diffusive coupling. The condition of chaotic synchronization is deter-
mined only by two “parameters of order,” i.e., the largest Lyapunov exponent and the coupling coefficient. Our
approach can be applied for both regular chaotic networks and arrays or lattices of chaotic oscillators with
irregular, arbitrarily assumed structure of coupling. The main idea of the synchronization stability criterion is
based on linear analysis of the ensembles of simplest dynamical systems. Numerical simulations confirm that
such a linear approach approximates the synchronization threshold with high precision.
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I. INTRODUCTION

Interaction of chaotic systems has been a subject of sci-
entific research for the past 20 years, thus the idea of syn-
chronization has been also adopted for these systems. It has
been demonstrated that two or more chaotic systems can syn-
chronize by linking them with mutual coupling or with a
common signal or signals(see, e.g.,[1–14]). In the case of
identical chaotic systems, i.e., the same set of ordinary dif-
ferent equations(ODEs) and values of the system param-
eters, complete synchronization can be obtained. The com-
plete synchronization[9] takes place when all trajectories
converge to the same value and remain in step during further
evolution [i.e., lim

t→`

ixstd−ystdi=0 for two arbitrarily chosen

trajectoriesxstd andystd].
In particular, chaotic synchronization in networks of

coupled dynamical systems has been intensively investigated
in recent years. The first analytical condition for complete
synchronization of the sets of symmetrically coupled identi-
cal continuous-time dynamical systems has been formulated
in [4]. Next this condition has been developed for discrete-
time systems[5,11]. Many approaches have been applied for
describing the synchronization problem for particular cou-
pling configurations as well as for more general cases
[3,11,15–27]. Most of the existing works on networks syn-
chronization refer to regular, symmetrical structure of cou-
pling. However, nonsymmetrical(in particular unidirec-
tional) and random coupling configurations have been also
considered in some papers[16–19,21–27]. Especially note-
worthy is a concept called the master stability function
(MSF) introduced by Pecora and Carroll[21,22], which al-

lows one to solve the network synchronization problem for
any set of coupling weights and connections and any number
of coupled oscillators. Other interesting solutions are the ap-
plications of graph theory to configurations of oscillators
[25] and the concept of the so-called small-world networks
[26,27] which connect the properties of regular and random
networks.

In this paper, we present how to exploit the properties of
diagonal diffusive coupling for the estimation of the network
synchronization threshold. Such coupling in the ensembles
of identical chaotic oscillators causes the synchronization
tendency to be a product of two factors only, namely the
largest Lyapunov exponent(LLE) of the node system and the
effective coupling rate between them. This fact enables us to
simplify theoretical analysis of the synchronization process.
We introduce the concept of thediffusive synchronization
stability matrix (DSSM) in order to investigate the stability
of the synchronous regime. Our approach can be successfully
applied both for flows and for maps with arbitrarily assumed
structure of coupling. In Sec. II, we show how to construct
the DSSM for the given case, and in Sec. III we present
analytical and numerical applications of our approach for
several examples of networks consisting of classical dynami-
cal systems, i.e., Lorenz and Rössler systems, Duffing oscil-
lator, logistic, and Henon maps.

II. SYNCHRONIZATION STABILITY ANALYSIS

Consider a set ofn identical dynamical systems with di-
agonal diffusive coupling of arbitrary configuration between
the oscillators. The equations of motion for the system are

ẋi = fsxid + o
j=1

n

Di jsx j − xid, s1d

wherexi PRkskPNù3d, fsxid is a function which governs
the dynamics of each individual oscillator andDi j
=diagfdij ,dij , . . . ,dijgPRk are diagonal coupling matrices
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defining rates of coupling between each pair of the sub-
systems in the networksi , j =1,2, . . . ,nd. ForDi j =0 (absence
of coupling), each of the subsystems given by Eq.(1)
evolves on the asymptotically stable chaotic attractorA.
Since these oscillators are identical, it can be assumed that
the solutions of equationẋi = fsxid starting from different ini-
tial points of the same basin of attraction represent the set of
n uncorrelated trajectories evolving on the attractorA (after a
period of transient motion). Let us introduce a new variable

xi j = xi − x j s2d

representing thetrajectories separationbetween any pair of
oscillators. Complete synchronization of all subsystems re-
quires a fulfillment of the expression

lim
t→`

ixi jstdi = 0, ∀ i, j . s3d

As it results from the definition of Lyapunov exponents,
the average distance between nearby trajectories diverges
with the rate determined by LLE. On the other hand, nonzero
diffusive coupling causes mutual convergence of these tra-
jectories. In several prior works[4,11,14,16] it has been con-
firmed that diffusive interaction of identical strange attractors
leads to the direct dependence between LLE and the cou-
pling coefficient, which can be used for the estimation of the
synchronization threshold. In our analysis, we have assumed
that the analogous effect occurs in the system under consid-
eration[Eq. (1)]. According to this approach, for sufficiently
small initial trajectories separationdistancexi js0d (where
linear effects are dominant) the synchronization process is a
product of two independent factors:(i) exponential diver-
gence of nearby trajectories with mean rate being propor-
tional to the positive LLE, and(ii ) exponential convergence
caused by introduced diffusive coupling with a rate being
proportional to effective coupling.

An exact determination of the synchronization condition
can be done analytically only in some simple cases of cou-
pling configurations, e.g., symmetrical or global coupling. A
more complex structure of the network requires an applica-
tion of advanced mathematical and numerical techniques
[16–18,21,22,25]. As follows from themaster stability func-
tion approach[21,22] (cf. also the Appendix for details), in
the case of diagonal coupling, only these two parameters of
order are important for the complete synchronization. Thus,
we can substitute the node by any other system characterized
by the same value of LLE without the influence on the pro-
cess of network synchronization and the level of synchroni-
zation threshold. This property can be used to simplify the
mathematical description of complete synchronization of
chaotic networks. Namely, we can reduce the system under
consideration[Eq. (1)] to the linear case withxi PR1 and
determine the synchronization threshold on the basis of the
linear stability analysis of the simplified system. In order to
preserve the necessary properties, two conditions have to be
fulfilled in the simplified system:(i) the substituted system in
R1 is characterized by the same value of LLE as the original
one, and(ii ) original and simplified systems have identical
configurations of coupling. The presented approach can be

applied for continuous-time systems as well as for discrete-
time systems.

A. Continuous-time systems

In order to construct a linear model of the system[Eq. (1)]
with one-dimensional nodes, we use the substitutions

fsxd = l1x, s4d

Di j = dij . s5d

Note that the assumed linear systemẋ=l1x has no attrac-
tor, but it is not a problem here. Most important is the fact
that the solution of such a linear system grows exponentially
(nearby trajectories diverge with the ratel1), which is re-
quired by the first condition of the system transformation.
Substituting Eqs.(4) and(5) into Eq. (1), we obtain a model
for the network of one-dimensional systems,

ẋi = l1xi + o
j=1

n

dijsxj − xid. s6d

This simplified model can be rewritten in the vector form,

TABLE I. Dynamical systems used in numerical simulations.

Dynamical system Equations of motion LLE−l1

ẋ=10.0sy−xd
Lorenz system ẏ=−xz+197.0x−y 1.849

ż=xy−8/3z

ẋ=−y−z

Rössler system ẏ=x+0.15y 0.085

ż=0.20+zsx−10.0d

Duffing oscillator
ẋ=y

0.098
ẏ=−1.0x3−0.10y+10 sinstd

Logistic map xm+1=3.90xms1−xmd 0.485

Henon map
xm+1=1−1.40xm

2 +ym 0.419
ym+1=0.30xm

FIG. 1. Star-type configuration of coupling.
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Ẋ = l1X + GX , s7d

whereX =fx1,x2, . . . ,xngT, and

G = 3− o
j=1

n

d1j d12 ¯ d1n

d21 � A
A � dn−1n

dn1 ¯ dnn−1 − o
j=1

n

dnj
4 s8d

is the coupling configuration matrix(note thatdii =0).
Let us now introduce thetrajectories separationbetween

arbitrarily chosen base subsystem and any otherj th oscillator
of the network. If we mark the base subsystem by subscript
“1,” we obtain

x1j = x1 − xj ,

xj − xr = x1r − x1j s j ,r = 2,3, . . . ,nd. s9d

Subtracting the remaining subsystems from the base node
and applying the introduced substitutions[Eqs.(9)], we can
rewrite the simplified system insn−1d-dimensional form

wheretrajectories separation variablesare given clearly,

Ẏ = SY, s10d

whereY =fx12,x13, . . . ,x1ngTPRn−1 and sn−1d3 sn−1d ma-
trix S assumes the form

S= 3
l1 − Sd12 + o

j=1

n

d2jD ¯ d2k − d1k ¯ d2n − d1n

A � A � A

di2 − d12 ¯ l1 − Sd1k + o
j=1

n

dijD ¯ din − d1n

A � A � A

dn2 − d12 ¯ dnk − d1k ¯ l1 − Sd1n + o
j=1

n

dnjD 4 , s11d

where indicesi andk enumerate rows and columns, respec-
tively. The system[Eq. (10)] now incorporates only trans-
verse dynamics to the synchronization hyperplane. There-
fore, complete synchronization of all subsystems of the
system[Eq. (6)] takes place if the critical point oftrajecto-
ries separationY =0 is a stable attractor. Such a situation
occurs if real parts of all eigenvalues of the matrix Eq.(11)
are negative. Thus, in agreement with the above assump-
tions, we can formulate the synchronization condition for the
general case of a network of chaotic time-continuous sys-
tems[Eq. (1)] in the following form:

Ressid , 0, s12d

wheresisi =1,2, . . . ,n−1d are eigenvalues of matrixS, which

we named thediffusive synchronization stability matrix
(DSSM) due to its universal character, i.e., the form of
DSSM depends only on the network coupling configuration
and LLE of the dynamical system considered as a network
node. The DSSM can be constructed directly from the cou-
pling matrix [Eq. (8)] according to the model formula given
by Eq. (11). In the general case, we can choose any node of
the network as the base to define the DSSM, because it is of
no significance for the results of synchronization stability
analysis.

B. Discrete-time systems

The system analogous to Eq.(1) but consisting ofn dif-
fusively coupled identical maps is described as follows:

FIG. 2. Chain-type configuration of coupling.
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xism+ 1d = f„xismd… + o
j=1

n

dij I kff„x jsmd… − f„xismd…g,

s13d

where xismdPRkskPNù1d and I k represents ak3k unit
matrix. We obtain the simplified version of Eq.(13) by ap-
plying the simplest discrete-time system,

xsm+ 1d = expsl1dxsmd, s14d

which fulfills the first condition of the system simplification,
i.e., LLE of the map given by Eq.(14) is equal tol1. Using
Eqs.(5) and (14), the system under consideration[Eq. (13)]
is reduced to the form analogous to Eq.(6) but described by
the following set of difference equations:

xism+ 1d = expsl1dxismd + o
j=1

n

dijfexpsl1dxjsmd

− expsl1dxismdg, s15d

or in the vector form

Xm+1 = expsl1dfXm + GXmg. s16d

Substituting Eq.(9) into Eq. (15) and proceeding in the
way shown in Sec. II A, we formulate the difference equa-
tions of trajectories separationevolution,

Ysm+ 1d = MY smd, s17d

and a version of DSSM for maps,

M = expsl1d3
1 −Sd12 + o

j=1

n

d2jD ¯ d2j − d1j ¯ d2n − d1n

A � A � A

di2 − d12 ¯ 1 −Sd1j + o
j=1

n

dijD ¯ din − d1n

A � A � A

dn2 − d12 ¯ dnj − d1j ¯ 1 −Sd1n + o
j=1

n

dnjD 4 . s18d

Hence, the synchronization threshold for the ensembles of
chaotic maps with regular or random configuration of cou-
pling is defined by the inequality

umiu , 1, ∀ i , s19d

where misi =1,2, . . . ,n−1d are eigenvalues of the DSSM
[Eq. (18)].

III. EXAMPLES OF THE DSSM APPLICATIONS

In this section, we present some results of analytical and
numerical estimation of the synchronization threshold for
chosen models of chaotic networks. The analysis of synchro-
nization stability on the basis of DSSM has been compared
with results of numerical experiment for a number of arrays
with regular structure of coupling and for the networks with
a random coupling configuration. In numerical simulations,
the examples of classical dynamical systems(flows and
maps) have been applied as the network nodes. Table I pre-
sents the form of detailed equations which describe these
examples with their corresponding LLEs.

A. Regular coupling configuration

In our analysis, three cases of the arrays of chaotic sys-
tems with regular structure of coupling have been consid-

ered:(i) symmetrical global coupling(each to each), (ii ) star-
type configuration of coupling in three versions, and(iii )
chain-type(nearest-neighbor) configuration.

In the case of symmetrical global interaction, the coupling
matrix [Eq. (8)] and both DSSM[Eqs.(11) and(18)] assume
the forms

G = d3
− n + 1 1 ¯ 1

1 � � A
A � � 1

1 ¯ 1 − n + 1
4 , s20d

S= 3
l1 − nd 0 ¯ 0

0 l1 − nd ¯ 0

A A � A
0 0 ¯ l1 − nd

4 , s21d

and

M = expsl1d3
1 − nd 0 ¯ 0

0 1 − nd ¯ 0

A A � A
0 0 ¯ 1 − nd

4 . s22d
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Inequalities(12) and(19) imply that complete synchroni-
zation of all network nodes occurs in the following ranges of
coupling parameter:

d .
l1

n
s23d

for flows and

1 − exps− l1d
n

, d ,
1 + exps− l1d

n
s24d

for maps. The above conditions of synchronization stay in
agreement with the results obtained earlier by means of other
approaches[5,11,16].

Star-type configuration of coupling(Fig. 1) can be real-
ized in three versions, i.e., mutual interaction(version I) and
unidirectional coupling to the central node(version II) or
from it (version III). If we assume the first oscillator to be the
central one in a star-type configuration of coupling, then it is
described by the equations

ẋ1 = fsx1d + o
j=2

n

d1I ksx j − x1d,

s25d

ẋ j = fsx jd + d2I ksx1 − x jd,

or

x1sm+ 1d = f„x1smd… + o
j=2

n

d1I kff„x jsmd… − f„x1smd…g,

s26d

x jsm+ 1d = f„x jsmd… + d2I kff„x1smd… − f„x jsmd…g,

where j =2,3,k. . .l ,n. The coupling matrix and both DSSM
corresponding to the systems given by Eqs.(25) and(26) are
as follows:

G = 3
s1 − Ndd1 d1 ¯ d1

d2 − d2 � 0

A � � A
d2 0 ¯ − d2

4 , s27d

S= 3
l1 − sd1 + d2d − d1 ¯ − d1

− d1 l1 − sd1 + d2d ¯ − d1

A A � A
− d1 − d1 ¯ l1 − sd1 + d2d

4 ,

s28d

FIG. 3. The comparison of the synchronization threshold(ratio
ds/l1 versus the number of oscillators in chain) calculated from
DSSM eigenvalues analysis and obtained from numerical investiga-
tions of chain synchronization;ds, synchronization value of the cou-
pling coefficient.(a) Duffing oscillators,(b) Lorenz systems,(c)
Rössler systems.
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M = expsl1d

33
1 − sd1 + d2d − d1 ¯ − d1

− d1 1 − sd1 + d2d ¯ − d1

A A � A
− d1 − d1 ¯ 1 − sd1 + d2d

4 .

s29d

The eigenvalues of both DSSM[Eqs. (28) and (29)] can
be calculated analytically from the equations

uS− sI n−1u = fl1 − sn − 1dd1 − d2 − sgsl1 − d2 − sdn−2 = 0

s30d

or

uM − mI n−1u = hexpsl1df1 − sn − 1dd1 − d2g − mj

3fexpsl1ds1 − d2d − mgn−2

= 0. s31d

The synchronization threshold of time-continuous sys-
tems for the firstsd1=d2=dd and the third(d1=0, d2=d)
version of star-type coupling configurations is given by the
inequality

d . l1. s32d

The second version of the coupling structuresd1=d,d2

=0d allows complete synchronization of periodic oscillators
only, because the condition of synchronization(for flows and
maps) resulting from both[Eqs. (30) and (31)] assumes the
form

l1 , 0. s33d

The next condition of synchronization, for the third ver-
sion of maps coupled as a starsd1=0,d2=dd, is given by

1 − exps− l1d , d , 1 + exps− l1d. s34d

The most interesting situation takes place when mutual
coupling in the star-type configuration of discrete-time sys-
tems is realizedsd1=d2=dd. Namely, the complete synchro-

nization is guaranteed if the coupling coefficientd fulfills the
inequalities(24) and (34) simultaneously, i.e.,

1 − exps− l1d , d ,
1 + exps− l1d

n
. s35d

Thus, in such a case the maximum number of chaotic
maps which are able to synchronize is limited by the inequal-
ity

n ,
1 + exps− l1d
1 − exps− l1d

. s36d

The above presented synchronization ranges of coupling
parameter[inequalities(23), (24), and(32)–(35)] which have
been determined analytically can be easily confirmed in nu-
merical simulations with an arbitrary chaotic system as-
sumed as the network node.

The last of the above considered cases of the regular cou-
pling configuration is the chain type, where every oscillator
interacts with two nearest neighbors(Fig. 2). The equations
of motion for such a case are

ẋi = fsxid + dI ksxi−1 − xid + dI ksxi+1 − xid s37d

and

xism+ 1d = ffxismdg + dI khffxi−1smdg − ffxismdgj

+ dI khffxi+1smdg − ffxismdgj. s38d

Hence, the coupling configuration is defined by

G = d3
− 2 1 0 ¯ 0 1

1 − 2 1 � ¯ 0

0 1 � � � A
A � � � 1 0

0 ¯ � 1 − 2 1

1 0 ¯ 0 1 − 2

4 . s39d

From the coupling matrix[Eq. (39)], we obtain the following
DSSM:

S= 3
l1 − 3d d 0 ¯ ¯ 0 − d

0 l1 − 2d d � A A A
− d d l1 − 2d � 0 A A
A 0 d � d 0 A
A A 0 � l1 − 2d d − d

A A A � d l1 − 2d 0

− d 0 ¯ ¯ 0 d l1 − 3d

4 , s40d
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M = expsl1d3
1 − 3d d 0 ¯ ¯ 0 − d

0 1 − 2d d � A A A
− d d 1 − 2d � 0 A A
A 0 d � d 0 A
A A 0 � 1 − 2d d − d

A A A � d 1 − 2d 0

− d 0 ¯ ¯ 0 d 1 − 3d

4 . s41d

The synchronization threshold given by inequalities(12)
and (19) has been evaluated numerically on the basis of the
QR algorithm of eigenvalues calculation[28]. In Figs.
3(a)–3(c), the comparison of the results obtained from
DSSM eigenvalues analysis[Eq. (40)] and from direct inves-
tigation of the synchronization process for time-continuous
chaotic systems presented in Table I is illustrated. We can
observe a high level of results conformity in all three ex-
amples. A similar situation is shown in Fig. 4, where the
synchronization analysis of the logistic maps(from Table I)
chain is presented. Also in this case the synchronization
ranges of coupling coefficient determined from eigenvalues
of DSSM [Eq. (41)] agree with appropriate regions obtained
from numerical simulations of chain dynamics. Our analysis
additionally demonstrates that fornù7, the complete syn-
chronization in the chain under consideration is impossible
because for arbitraryd, the condition of synchronization[in-
equality (19)] is not fulfilled.

B. Random coupling configuration

The first example consists of four randomly coupled cha-
otic oscillators according to the scheme shown in Fig. 5. The

corresponding coupling configuration matrix has the follow-
ing form:

G = d3
− 3 1 2 0

2 − 2 0 0

1 0 − 1 0

3 2 0 − 5
4 . s42d

It is obvious that an irregular coupling configuration
causes nonsymmetrical, random structure of both DSSM,

S= 3l1 − 3d − 2d 0

− d l1 − 3d 0

0 − 2d l1 − 4d
4 s43d

and

M = expsl1d31 − 3d − 2d 0

− d 1 − 3d 0

0 − 2d 1 − 4d
4 . s44d

The eigenvalues of the above matrices[Eqs. (43) and
(44)] can be calculated analytically as

s1 = l1 − 4d,s2,3= l1 − s3 ± Î2d d

or

m1 = expsl1ds1 − 4dd,

FIG. 4. The comparison of the synchronization ranges of cou-
pling coefficientd in the chain of diffusively coupled logistic maps
calculated from DSSM eigenvalues analysis and obtained from nu-
merical simulations;du and dl, upper and lower ends of the syn-
chronization range.

FIG. 5. Four oscillators with irregular configuration of
coupling.
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m2,3= expsl1df1 − s3 ± Î2ddg.

Substituting these eigenvalues into inequalities(12) and(19),
we obtain the synchronization ranges of parameterd for the
network shown in Fig. 5,

d .
l1

3 −Î2
s45d

for flows and

1 − exps− l1d
3 −Î2

, d ,
1 + exps− l1d

3 +Î2
s46d

for maps. The confirmation of complete synchronization sta-
bility regions given by inequalities(45) and(46) is shown in
Figs. 6(a) and 6(b), where the comparison of analytical re-
sults with numerical simulations is presented. As the ex-
amples of nodes in the considered network(Fig. 5), the
Rössler oscillator and Henon map have been used.

The last example is a set of ten identical time-continuous
systems(Duffing oscillators) with randomly assumed cou-
pling structure represented by the matrix

G = d3
− 17 0 2 4 0 0 7 0 4 0

0 − 17 2 8 0 1 0 0 0 6

0 0 − 17 1 5 0 7 4 0 0

9 2 0 − 21 0 3 5 1 0 1

4 6 7 1 − 23 0 0 3 2 0

5 0 0 0 10 − 19 3 0 0 1

0 1 3 10 2 0 − 18 0 2 0

0 4 3 0 0 5 7 − 19 0 0

1 0 0 2 0 0 0 10 − 13 0

7 4 0 0 10 2 0 1 2 − 26

4 . s47d

The DSSM resulting from the coupling matrix[Eq. (47)] is as follows:

FIG. 6. Bifurcation diagrams(the sum of averagetrajectories
separationvs coupling coefficient) representing the comparison of
the synchronization ranges in the ensembles of dynamical systems
[(a) set of Rössler systems,(b) set of logistic maps] with the scheme
of connections shown in Fig. 5. The ranges obtained analytically
according to Eqs.(45) and(46) are marked and described in black.
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S= l1I 9 + d3
− 17 0 4 0 1 − 7 0 − 4 6

0 − 19 − 2 5 0 0 4 − 4 0

2 − 2 − 25 0 3 − 2 1 − 4 1

6 5 − 3 − 23 0 − 7 3 − 2 0

0 − 2 − 4 10 − 19 − 4 0 − 4 1

1 1 6 2 0 − 25 0 − 2 0

4 1 − 4 0 5 0 − 19 − 4 0

0 − 2 − 2 0 0 − 7 10 − 17 0

4 − 2 − 4 10 2 − 7 1 − 2 − 26

4 . s48d

In Figs. 7(a) and 7(b), numerically calculated real parts of
the eigenvalues of DSSM[Eq. (48), Fig. 7(b)] and the cor-
respondingtrajectories separationbifurcation diagram[Fig.
7(a)] drawn as a function of coupling parameterd are shown.
Comparing both diagrams, we can see that according to in-
equality(12), the synchronization appears[trajectories sepa-
ration tends to zero in Fig. 7(a)] if all real parts of DSSM
eigenvalues become negative. Thus, even in such a case of a
larger number of oscillators with completely irregular cou-
pling structure, calculation of the synchronization threshold
by means of the DSSM method is a simple task.

IV. CONCLUSIONS

The presented theoretical analysis supported by numerical
simulations leads to the main conclusion that chaotic syn-
chronization in the networks composed of the identical os-
cillators with diagonal, diffusive-type interaction between
them can be considered as simple, linear dynamical process.
Two “parameters of order,” i.e., the largest Lyapunov expo-
nent of the network node system and the effective coupling
rate between the nodes, play the dominant role in this pro-
cess. This property of diagonal coupling allows us to esti-
mate the synchronization threshold for arbitrary configura-
tion of coupling. Such a method is based on the simplified,
linear model of the network. The advantage of this approach
is the simplicity of its application for both continuous-time
and discrete-time systems. In order to examine the stability
of the synchronization state, we introduce the concept of the
diffusive synchronization stability matrix. The DSSM is con-
structed directly from a coupling configuration matrix and
allows the linear stability analysis. The other advantage of
the method is the possibility of application for node systems
with discontinuities or time delay, if obviously we are able to
estimate LLE of such a system. However, one should note
that our approach can be realized only in the case of diagonal
coupling because only in such a case can we substitute the
coupling matrices for coupling coefficients according to Eq.
(5). Nondiagonal coupling(realized by not all system coor-
dinates for each pair of nodes) forces us to take the full
mathematical form of the node system into consideration in
the network synchronization process, which makes simplifi-
cation of the network given by Eqs.(4) and (5) impossible.
In such cases, other techniques for the determination of the
synchronization condition have to be used, for instance the
previously mentioned MSF. We would like to point out that
the presented approach can be qualified as a version of the
MSF method, but its possibilities of use in very different
systems(maps and flows) makes it widely useful. However,
we want to stress that the results have been obtained in a
different way from the MSF. In the Appendix, we present the
synchronization criteria analogous to inequalities(12) and
(19) but derived on the basis of the MSF for diagonal cou-
pling. The comparison of both approaches confirms the
above conclusion that the method based on the DSSM can be
treated as the version of MSF for the case of diagonal cou-
pling.

FIG. 7. Bifurcation diagram of averagetrajectories separations
vs coupling coefficient(a) and corresponding eigenvalues of DSSM
[Eq. (48)] (b) for ten Duffing oscillators with random structure of
coupling [Eq. (47)].
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APPENDIX A: MASTER STABILITY FUNCTION FOR THE
SYSTEMS WITH DIAGONAL COUPLING

We apply the idea ofmaster stability functions[21,22] for
the case when the coupling between nodes is diagonal. It will
follow that only the largest Lyapunov exponent of the node
system and eigenvalues of the coupling matrix are relevant
for complete synchronization.

1. Time-continuous systems

Consider the system of coupled oscillators(nodes) of the
form

ẋi = fsxid + o
r=1

n

GijHsx jd, sA1d

where j =1,2, . . . ,N. The dynamics of the individual node is
described, respectively, by

ẋi = fsxid. sA2d

Herexi PRm is anm-dimensional vector of variables for
each node,i =1,2, . . . ,N. We assume the function of the
node’s variablesHsxd, which is used in the coupling, is of
the form Hsxd=x, which indicates the diagonal linear cou-
pling. The matrix of coupling coefficientshGijj satisfies
S j=1

N Gij =0 so that the synchronization manifoldx1=¯ =xN
is invariant.

Following [21,22], the system[Eq. (A1)] can be written in
the form

ẋ = Fsxd + sG ^ Imdx, sA3d

wherex=sx1= . . . =xNd, Fsxd= fsx1d , . . . ,fsxNd, and ^ is the
direct (Kronecker) product of two matrices. Letx1std=¯

=xNstd=sstd be a completely synchronous solution, satisfying
ṡ= fssd, and letji PRm be the variation of theith node around
this solution. Then for the collection of variationsj
=sj1, . . . ,jNd we have

j̇ = fIN ^ DF„sstd… + sG ^ Imdgj, sA4d

whereIN and Im are unit matrices of sizeN3N andm3m,
respectively. The system[Eq. (A4)] can be block diagonal-
ized with the blocks, cf.[21,22],

ḣk = fDFssd + gkghk, sA5d

wherehkPRm are new variations andgk are eigenvalues of
the coupling matrixG. Equation(A5) can be transformed
into the system

ḣ = fDFssdgh sA6d

by the change of variableshk→h expsgktd. Since the system
[Eq. (A6)] describes the variations for uncoupled oscillators

and is characterized by the maximal Lyapunov exponentl1,
then the variations in Eq.(A5) will be described by the trans-
verse Lyapunov exponentl1+gk. If the real part ofl1+gk is
negative, then the completely synchronous motionsstd will
be stable transversely. Therefore, the condition

l1 + Reg , 0 sA7d

can serve as a simple criterion for the complete synchroni-
zation of the system[Eq. (A1)] of coupled oscillators. Here
l1 is the maximal Lyapunov exponent of the uncoupled sys-
tem[Eq. (A2)] andg is the eigenvalue of the coupling matrix
G with maximal real part(one zero eigenvalue, correspond-
ing to the motion along the synchronization manifold, must
be excluded).

2. Maps

The previous analysis can be generalized for the case of
coupled maps,

xn+1
i = fsxn

i d + o
j=1

n

Gij fsxn
j d, sA8d

wherei , j =1,2, . . . ,N. The dynamics of the individual node
is described, respectively, by

xn+1
i = fsxn

i d. sA9d

The matrix of coupling coefficientshGijj satisfiesS j=1
N Gij

=0. Let ji PRm be the variation of theith node around the
completely synchronous solutionxn

1=¯ =xn
N=sn. Then, for

the collection of variationsj=sj1, . . . ,jNd, we have

jn+1 = fIN ^ DFssnd + G ^ DFssndgjn. sA10d

The system[Eq. (A10)] can be block diagonalized with the
blocks

hn+1
k = DFssndf1 + gkghn

k, sA11d

wherehkPRm are new variations andgk are eigenvalues of
the coupling matrixG. It is clear that the stability of the zero
fixed point of Eq. (A11) is characterized by the maximal
Lyapunov exponentl, which is related to the corresponding
quantityl1 for the equation

hn+1 = fDFssndg hn sA12d

as follows:l=l1s1+gkd. As a result, the stability condition
for a transverse mode is

l1us1 + gdu , 1, sA13d

wherel1 is a maximal Lyapunov exponent of the uncoupled
system[Eq. (A12)] and g is an eigenvalue of the coupling
matrix G. In order to achieve the complete synchronization,
inequality(A13) must be satisfied for all eigenvaluesg of the
matrix G, except oneg=0, which corresponds to the motion
within the synchronization manifold.(Of course, additional
zerosg=0 can appear also in the transverse direction.)
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