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Simple estimation of synchronization threshold in ensembles of diffusively coupled chaotic
systems
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In this paper, we define a simple criterion of the synchronization threshold in the set of coupled chaotic
systemgflows or map$ with diagonal diffusive coupling. The condition of chaotic synchronization is deter-
mined only by two “parameters of order,” i.e., the largest Lyapunov exponent and the coupling coefficient. Our
approach can be applied for both regular chaotic networks and arrays or lattices of chaotic oscillators with
irregular, arbitrarily assumed structure of coupling. The main idea of the synchronization stability criterion is
based on linear analysis of the ensembles of simplest dynamical systems. Numerical simulations confirm that
such a linear approach approximates the synchronization threshold with high precision.
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[. INTRODUCTION lows one to solve the network synchronization problem for
any set of coupling weights and connections and any number
bf coupled oscillators. Other interesting solutions are the ap-
Jlications of graph theory to configurations of oscillators
and the concept of the so-called small-world networks

6,27 which connect the properties of regular and random
networks.

In this paper, we present how to exploit the properties of
agonal diffusive coupling for the estimation of the network
synchronization threshold. Such coupling in the ensembles
Mt identical chaotic oscillators causes the synchronization
tendency to be a product of two factors only, namely the
EL[:\rgest Lyapunov expone(itLE) of the node system and the
effective coupling rate between them. This fact enables us to
: . simplify theoretical analysis of the synchronization process.
trajectories(t) andy(t)]. We introduce the concept of thdiffusive synchronization

In partlcular_, chaotic synchronlza'_uon n net_works_ of stability matrix(DSSM) in order to investigate the stability
coupled dynamical systems has been intensively investigate

in recent years. The first analytical condition for complete0 the synchronous regime. Our approach can be successfully

synchronization of the sets of symmetrically coupled identi—applled both for flows and for maps with arbitrarily assumed

cal continuous-time dynamical systems has been formulated ructure of coupling. In Sec. I, we show how to construct
in [4]. Next this condition has been developed for discrete-t e DSSM for the given case, and in Sec. Ill we present

time systemg5,11]. Many approaches have been applied foranalytical and numerical applicatiqn_s of our approach for
describing the,synchronization problem for particular cou-Several examples of networks consisting of classical dynami-

; , . cal systems, i.e., Lorenz and Rossler systems, Duffing oscil-
pling configurations as well as for more general case

[3,11,15-27. Most of the existing works on networks syn- ?ator, logistic, and Henon maps.

chronization refer to regular, symmetrical structure of cou-

pling. However, nonsymmetricalin particular unidirec- Il. SYNCHRONIZATION STABILITY ANALYSIS
tional) and random coupling configurations have been also
considered in some papef$6-19,21-2F. Especially note-
worthy is a concept called the master stability function
(MSF) introduced by Pecora and Carr¢f1,22, which al-

Interaction of chaotic systems has been a subject of sc
entific research for the past 20 years, thus the idea of sy
chronization has been also adopted for these systems. It h
been demonstrated that two or more chaotic systems can sy,
chronize by linking them with mutual coupling or with a
common signal or signalsee, e.g.[1-14)). In the case of
identical chaotic systems, i.e., the same set of ordinary dify;
ferent equation§ODE9 and values of the system param-
eters, complete synchronization can be obtained. The co
plete synchronizatiorj9] takes place when all trajectories
converge to the same value and remain in step during furth
evolution[i.e., lim||x(t)=y(t)||=0 for two arbitrarily chosen

t—o

Consider a set ofi identical dynamical systems with di-
agonal diffusive coupling of arbitrary configuration between
the oscillators. The equations of motion for the system are

n
% =f(x) + 2 Djj(xj = Xi), (1)
i
*Electronic address: steve@p.lodz.pl; URL:http://www.p.lodz.pl/ .
K13 wherex; e R{ke N=23), f(x;) is a function which governs
TAlso at Institute of Mathematics, National Academy of Sciencesthe dynamics of each individual oscillator anb;;
of Ukraine, Tereshchenkivska 3, 01601 Kiev, Ukraine. =diadd;,d;, ... dj] e R are diagonal coupling matrices
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defining rates of coupling between each pair of the sub- TABLE I. Dynamical systems used in numerical simulations.
systems in the network,j=1,2, ... n). ForD;;=0 (absence
of coupling, each of the subsystems given by Ed) Dynamical system Equations of motion LLET
evolves on the asymptotically stable chaotic attractor

Since these oscillators are identical, it can be assumed that , X=10.0y-x)
the solutions of equatior, =f(x;) starting from different ini- Lorenz system y=-xz+197.0¢-y 1.849
tial points of the same basin of attraction represent the set of z=xy-8/3
n uncorrelated trajectories evolving on the attra&dafter a X=-y-z
period of transient motion Let us introduce a new variable Rdssler system y=x+0.15/ 0.085
z=0.20+z(x-10.0

Xi =X @ Duffing oscillator . s =y . 0.098
representing thérajectories separatiorbetween any pair of y=-1.0¢-0.10/+10 sir(t)
oscillators. Complete synchronization of all subsystems re- Logistic map Xm+1:3-90(m(12_xm) 0.485
quires a fulfillment of the expression Herion map Xw1=1 = 140G+ Y 0419

Yme1=0.3%p,

!E‘;”Xij(t)u =0, 0Oi,j. (3
As it results from the definition of Lyapunov exponents, qpplied for continuous-time systems as well as for discrete-
the average distance between nearby trajectories divergd§'e systems.
with the rate determined by LLE. On the other hand, nonzero
diffusive coupling causes mutual convergence of these tra- A. Continuous-time systems
jectories. In several prior workgl,11,14,16 it has been con-
firmed that diffusive interaction of identical strange attractors
leads to the direct dependence between LLE and the co¥
pling coefficient, which can be used for the estimation of the
synchronization threshold. In our analysis, we have assumed
that the analogous effect occurs in the system under consid-
eration[Eqg. (1)]. According to this approach, for sufficiently Dy =d;. (5)
small initial trajectories separatiordistancex;;(0) (where ) .
linear effects are dominanthe synchronization process is a  'Note that the assumed linear systemi x has no attrac-
product of two independent factoré) exponential diver- tor, but it is r}ot a problem .here. Most important is the fgct
gence of nearby trajectories with mean rate being proportn@t the solution of such a linear system grows exponentially
tional to the positive LLE, andiii) exponential convergence (N€arby trajectories diverge with the ratg), which is re-
caused by introduced diffusive coupling with a rate beingq“'red_ by the first condlthn of the system tra_msformaﬂon.
proportional to effective coupling. Substituting Eqs(4) and('_s) mto_ Eq.(1), we obtain a model

An exact determination of the synchronization condition" the network of one-dimensional systems,

can be done analytically only in some simple cases of cou-
pling configurations, e.g., symmetrical or global coupling. A o
more complex structure of the network requires an applica- X =haXi+ Zld”(xi — %) 6)
tion of advanced mathematical and numerical techniques =
[16-18,21,22,25 As follows from themaster stability func- s simplified model can be rewritten in the vector form,
tion approach21,22 (cf. also the Appendix for detailsin
the case of diagonal coupling, only these two parameters of
order are important for the complete synchronization. Thus,
we can substitute the node by any other system characterized
by the same value of LLE without the influence on the pro-
cess of network synchronization and the level of synchroni-
zation threshold. This property can be used to simplify the
mathematical description of complete synchronization of
chaotic networks. Namely, we can reduce the system under
consideration[Eq. (1)] to the linear case withx; € R* and
determine the synchronization threshold on the basis of the
linear stability analysis of the simplified system. In order to
preserve the necessary properties, two conditions have to be
fulfilled in the simplified system(i) the substituted system in
R'is characterized by the same value of LLE as the original
one, and(ii) original and simplified systems have identical
configurations of coupling. The presented approach can be FIG. 1. Star-type configuration of coupling.

In order to construct a linear model of the systidn. (1)]
ith one-dimensional nodes, we use the substitutions

f(x) =Aax, (4)

n
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X =N\ X +GX, 7
whereX =[xy,%s, ... X,]T, and
n
_Edlj dp - din
j=1
d2l ". S
G= . . (8)
: ’ dn—1n
n
Ony 0 Oy - 2 dnj
=1

is the coupling configuration matrignote thatd;; =0).
Let us now introduce th&ajectories separatiofbetween
arbitrarily chosen base subsystem and any djttieoscillator

of the network. If we mark the base subsystem by subscript FIG. 2. Chain-type configuration of coupling.
“1,” we obtain
_ wheretrajectories separation variableare given clearly,
le - Xl - XJ y
X=X =Xy~ X (j,r=2,3,...n). 9) Y =9SY, (10

Subtracting the remaining subsystems from the base node
and applying the introduced substitutiofi&gs. (9)], we can  whereY =[X5,Xy3, ... Xinl" € R™1 and (n-1) X (n-1) ma-
rewrite the simplified system irfn—1)-dimensional form trix S assumes the form

n
M‘(dlz"‘Edzj) Oy = di o — dypy
j=1
n
S= iz = di2 )\1_<d1k+2dij> din = din , (11
=1
n
dnp —dy O = A >\1-<d1n+2dnj>
=1

where indices andk enumerate rows and columns, respec-we named thediffusive synchronization stability matrix
tively. The systemEq. (10)] now incorporates only trans- (DSSM) due to its universal character, i.e., the form of
verse dynamics to the synchronization hyperplane. ThereDSSM depends only on the network coupling configuration
fore, complete synchronization of all subsystems of theand LLE of the dynamical system considered as a network
system[Eq. (6)] takes place if the critical point dfajecto- node. The DSSM can be constructed directly from the cou-
ries separationY =0 is a stable attractor. Such a situation pling matrix [Eq. (8)] according to the model formula given
occurs if real parts of all eigenvalues of the matrix Etf) by Eq.(11). In the general case, we can choose any node of
are negative. Thus, in agreement with the above assumphe network as the base to define the DSSM, because it is of
tions, we can formulate the synchronization condition for theno significance for the results of synchronization stability
general case of a network of chaotic time-continuous sysanalysis.

tems[Eq. (1)] in the following form:

B. Discrete-time systems
Re(s) <0, (12 . .
The system analogous to E(d.) but consisting oh dif-

wheres((i=1,2, ... n—1) are eigenvalues of matri® which  fusively coupled identical maps is described as follows:
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xi(m+1) =f(x;(m) + > di L LF(x;(m) = F(x;(m)) ], x(m+ 1) = expAp)x(m) + > di;[exphy)x;(m)
=1 =1

(13) —expA)x(m)], (15)
where x;(m) e R{(ke N=1) and |, represents &Xxk unit or in the vector form
matrix. We obtain the simplified version of E(L3) by ap-
plying the simplest discrete-time system, Xine1 = €XPA)[ X+ GX . (16)

x(m+ 1) = exp(A1)x(m), (14)

which fulfills the first condition of the system simplification
i.e., LLE of the map given by Eq14) is equal to\;. Using

Substituting Eq(9) into Eg. (15) and proceeding in the
way shown in Sec. Il A, we formulate the difference equa-
' tions oftrajectories separatiorevolution,

Egs.(5) and(14), the system under consideratifaq. (13)] Y(m+1) = MY (m), (17)
is reduced to the form analogous to E6) but described by
the following set of difference equations: and a version of DSSM for maps,
|
- ) -
1- <d12+ > de) dyj = dy o = dypy
=1
‘ n
M = exp\y) diz = dpo 1- (dlj +> dij) din = di1n (18
=1
. n
dnz_dlz dn]_dlj 1_(dln+2dnj)
j=1

Hence, the synchronization threshold for the ensembles adred:(i) symmetrical global couplingeach to each (ii) star-
chaotic maps with regular or random configuration of cou-type configuration of coupling in three versions, afiid)

pling is defined by the inequality

|wil < 1,01, (19)

where u;(i=1,2,... n-1) are eigenvalues of the DSSM the forms

[Eq. (18)].
Ill. EXAMPLES OF THE DSSM APPLICATIONS

In this section, we present some results of analytical and
numerical estimation of the synchronization threshold for
chosen models of chaotic networks. The analysis of synchro-
nization stability on the basis of DSSM has been compared
with results of numerical experiment for a number of arrays
with regular structure of coupling and for the networks with
a random coupling configuration. In numerical simulations,
the examples of classical dynamical systeffisws and
map9 have been applied as the network nodes. Table | pre-
sents the form of detailed equations which describe thes&"
examples with their corresponding LLEs.

A. Regular coupling configuration

In our analysis, three cases of the arrays of chaotic sys-
tems with regular structure of coupling have been consid-
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chain-type(nearest-neighbgrconfiguration.
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matrix [Eg. (8)] and both DSSME(Qs.(11) and(18)] assume
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—a&— numerical simulations

Inequalities(12) and(19) imply that complete synchroni-
zation of all network nodes occurs in the following ranges of

—*—DSSM eigenvalues analysis

coupling parameter: 7 ————————
ds
\ 7 64 (a)
d> L (29
5
for flows and 44 _
1-exgd—-A 1+exgd—A\
[ l)<d< A=Ay (24) 3 .
n n y
24 / !
for maps. The above conditions of synchronization stay in “
agreement with the results obtained earlier by means of othe 17 MX%A/} 1
approache$s,11,14. K
Star-type configuration of coupling=ig. 1) can be real- — T T T T T T T T T T T
ized in three versions, i.e., mutual interacti@ersion ) and 7 — 11—
unidirectional coupling to the central nodeersion Il) or dy 1
from it (version IlI). If we assume the first oscillator to be the 7, 6- (b) 7/
central one in a star-type configuration of coupling, then it is /f"\
described by the equations 5 / .
n 4 o |
>'<1=f(x1)+2 dal k(X = X), \,/*
i=2 34 /\ ]
(25) 2 /x/:( i
X
Xi =f(X;) + dol ( (X1 = %), 14 el ]
i ] 2HAAL A )I:MM
Or 0 ] T 1 1 T 1 1 1 1 1 1 T 1
dv 7  § T 1 T T T & T T T Ll T
: T
xy(m-+ 1) = f(xy(m) + X ol JF(x;(m) = Fxe ()], ol ©
j=2
5
(26)
4.
xj(m+ 1) = f(x;(m)) + dyl [ F(x1(m)) = F(x;(m))], 3
wherej=2,3...),n. The coupling matrix and both DSSM 7.
corresponding to the systems given by H@%) and(26) are
as follows: 1
@”"y\#
(1 - N)dl dl dl 0 T T T T T T T T T T T
. 34 5 6 7 8 9 1011 12 13 14 15 16
d2 - d2 . 0 5
G= i _ _ P (27) number of oscillators »
; - ; FIG. 3. The comparison of the synchronization threshoddio
d, 0 -d, ds/\; versus the number of oscillators in chpicalculated from
DSSM eigenvalues analysis and obtained from numerical investiga-
tions of chain synchronizatiowl;, synchronization value of the cou-
A= (dy+dy) —-d; —-d; pling coefficient.(a) Duffing oscillators,(b) Lorenz systems(c)
S -d; A - (dy+dy) -d; Rdossler systems.
=y —dy A= (dy+dy)
(28)
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M:eXF()\l)
1-(di+dy -dy —d;
~d;  1-(d+dp) - -d
y G (‘1 ») o
—d —d; 1-(di+dy)

(29)

The eigenvalues of both DSSMEgs. (28) and (29)] can
be calculated analytically from the equations

S=slnq/ =\ = (n=Ddy ~dr = S](A\; = d, —9)"?=0
(30)
or
IM =l pg| ={exp(\p)[1 — (n— 1)dy - do] - p}
X[expA)(1 —dp) — u]"?
-0. (31)

PHYSICAL REVIEW E 70, 026217(2004)

nization is guaranteed if the coupling coefficierfulfills the
inequalities(24) and (34) simultaneously, i.e.,

1+exg—A
1—ex;:(—)\1)<d<%.

(395
Thus, in such a case the maximum number of chaotic
maps which are able to synchronize is limited by the inequal-
ity
1 + eXF(_ )\1)
1 - eXF(_ )\1) .

The above presented synchronization ranges of coupling
parametefinequalities(23), (24), and(32)—(35)] which have
been determined analytically can be easily confirmed in nu-
merical simulations with an arbitrary chaotic system as-
sumed as the network node.

The last of the above considered cases of the regular cou-
pling configuration is the chain type, where every oscillator
interacts with two nearest neighbdifSig. 2). The equations

(36)

The synchronization threshold of time-continuous sys-of motion for such a case are

tems for the first(d;=d,=d) and the third(d;=0, d,=d)

version of star-type coupling configurations is given by the X = 106) + dl (X1 = %) + dl(Xi = X)) (37
inequality and
d= A (32 xi(m-+ 1) = fx(m)] + di dfx o (m)] = i (m) ]}
The second version of the_coqpling stru_ctt@da:d,.dz + dl {f[ X1 (M)] = F[x (M)} (38)
=0) allows complete synchronization of periodic oscillators . ) o ]
only, because the condition of synchronizatier flows and Hence, the coupling configuration is defined by
map9 resulting from both Egs. (30) and (31)] assumes the - -
form -2 1 0 0o 1
A, <O. (33 1 -2 1 0
The next condition of synchronization, for the third ver- G=d 0 1 wo (39)
sion of maps coupled as a si@;=0,d,=d), is given by P 1 0
1—exg-\y) <d<1+exf-A\y). (34) 0 1 -2 1
1 0 -~ 0 1 - 2
The most interesting situation takes place when mutual

coupling in the star-type configuration of discrete-time sys-From the coupllng matrixeq. (39)], we obtaln the following
tems is realizedd,;=d,=d). Namely, the complete synchro- DSSM:
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0 1-24 d : :
-d d 1-2d - 0 : :
M =exp\y)| 0 d d 0 : . (41)
: 0 . 1-2d d -d
d 1-2d 0
i -d 0 0 d 1—3d_

The synchronization threshold given by inequaliti#®)  corresponding coupling configuration matrix has the follow-
and(19) has been evaluated numerically on the basis of théng form:
QR algorithm of eigenvalues calculatiof28]. In Figs.

3(a)-3(c), the comparison of the results obtained from -3 1 2 O
DSSM eigenvalues analydigqg. (40)] and from direct inves- 2 -2 0 0
tigation of the synchronization process for time-continuous G=d . (42)
chaotic systems presented in Table | is illustrated. We can 1 0-10
observe a high level of results conformity in all three ex- 3 2 0 -5

amples. A similar situation is shown in Fig. 4, where the
synchronization analysis of the logistic mafioom Table )
chain is presented. Also in this case the synchronizatio

It is obvious that an irregular coupling configuration
gauses nonsymmetrical, random structure of both DSSM,

ranges of coupling coefficient determined from eigenvalues a—3d -2d 0

of DSSM[Eq. (41)] agree with appropriate regions obtained !

from numerical simulations of chain dynamics. Our analysis S=| -d N\-3d O (43)
additionally demonstrates that for=7, the complete syn- 0 -2d N -4d

chronization in the chain under consideration is impossible
because for arbitrargl, the condition of synchronizatiofin-  and
equality (19)] is not fulfilled.
1-3d -2d 0
M=expy)| —-d 1-3d 0 |. (44)
0 -2d 1-4

The first example consists of four randomly coupled cha- 41,4 eigenvalues of the above matricdgs. (43) and
otic oscillators according to the scheme shown in Fig. 5. Th?44)] can be calculated analytically as '

B. Random coupling configuration

—4— numerical simulations S =N - 4d152’3: - (3% \“E) d

—e— DSSM ecigenvalues analysis
or

0.60

d \ ﬁ 1= exp\) (L - 4d),
0.40 - el B
/
4

_~

A

\a

0.20

0.00

2 3 5 6 7

number of oscillators »

FIG. 4. The comparison of the synchronization ranges of cou-
pling coefficientd in the chain of diffusively coupled logistic maps
calculated from DSSM eigenvalues analysis and obtained from nu-
merical simulationsg, andd,, upper and lower ends of the syn- FIG. 5. Four oscillators with irregular configuration of
chronization range. coupling.
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#2a= expM)[1 - (3:£\2)d]. —
200 (a)

Substituting these eigenvalues into inequalifie®d and(19),
we obtain the synchronization ranges of paramdtéar the
network shown in Fig. 5,

d > 0.0535

v

32 (45)

0 . T T T T
0.00 0.01 0.02 0.03 004 005 0.06 0.07 0.08 0.09 0.10

d

for flows and

(b) .

1-exgd—\y) 1+exgd—\y)
- <d< 3410 (46)

0216< d < 0376 |

for maps. The confirmation of complete synchronization sta-
bility regions given by inequalitiegt5) and(46) is shown in
Figs. @a) and &b), where the comparison of analytical re-
:rjr!t;evsv'tgf nnuorgggci&:]l frl]rgucl:ztrl](;?;erlz dp;eest\?vr(:;ﬁeg Ag)s ttui ex- FIG. 6. Bifurcation diagramgthe sum of averag&rajectories

.. . C separationvs coupling coefficientrepresenting the comparison of
Réssler oscillator a”?’ Henon map I_'lave_been used. . the synchronization ranges in the ensembles of dynamical systems
The last example is a set of ten identical time-continuoug ) set of Réssler systemg) set of logistic mapiswith the scheme
systems(Duffing oscillatorg with randomly assumed Cou- of connections shown in Fig. 5. The ranges obtained analytically

d 0.40

pling structure represented by the matrix according to Eqs(45) and(46) are marked and described in black.

-17 O 2 4 0 0 7 0 4 0

0 -17 2 8 0 1 0 0 0 6

0 0o -17 1 5 0 7 4 0 0

9 2 0 -21 O 3 5 1 0 1

_ 4 6 7 1 -23 0 0 3 2 0

¢=d' 5 o 0o o0 10 -19 3 0 0 1 “n

0 1 3 10 2 0O -18 O 2 0

0 4 3 0 0 5 7 -19 O 0

1 0 0 2 0 0 0 10 -13 O

| 7 4 0 0O 10 2 0 1 2 - 2(_3

The DSSM resulting from the coupling matirjikq. (47)] is as follows:

026217-8
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-17 O 4 0 1 -7 0 -4 6
0 -19 -2 &5 0 0 4 -4 0
2 -2 -25 0 3 -2 1 -4 1
6 5 -3 -23 0 -7 3 -2 0
S=N\lg+d] O -2 -4 10 -19 -4 0 -4 1 (48
1 1 6 2 0 -25 0 -2 O
4 1 -4 0 5 0O -19 -4 0
0o -2 -2 0 0O -7 10 -17 O
| 4 - 2 -4 10 2 -7 1 -2 - ZE
[
In Figs. 1a) and 1b), numerically calculated real parts of IV. CONCLUSIONS

the eigenvalues of DSSNEq. (48), Fig. 7(b)] and the cor- The presented theoretical analysis supported by numerical
respondingrajectories separatiorbifurcation diagran{Fig.  simulations leads to the main conclusion that chaotic syn-
7(a)] drawn as a function of coupling parameteare shown.  chronization in the networks composed of the identical os-
Comparing both diagrams, we can see that according to ircillators with diagonal, diffusive-type interaction between
equality(12), the synchronization appedtsajectories sepa- them can be considered as simple, linear dynamical process.
ration tends to zero in Fig. (@] if all real parts of DSSM  Two “parameters of order,” i.e., the largest Lyapunov expo-
eigenvalues become negative. Thus, even in such a case ofhant of the network node system and the effective coupling
larger number of oscillators with completely irregular cou-rate between the nodes, play the dominant role in this pro-
pling structure, calculation of the synchronization thresholdcess. This property of diagonal coupling allows us to esti-
by means of the DSSM method is a simple task. mate the synchronization threshold for arbitrary configura-
tion of coupling. Such a method is based on the simplified,
linear model of the network. The advantage of this approach
is the simplicity of its application for both continuous-time
and discrete-time systems. In order to examine the stability
(@) of the synchronization state, we introduce the concept of the
diffusive synchronization stability matriXhe DSSM is con-
structed directly from a coupling configuration matrix and
allows the linear stability analysis. The other advantage of
the method is the possibility of application for node systems
with discontinuities or time delay, if obviously we are able to
estimate LLE of such a system. However, one should note
that our approach can be realized only in the case of diagonal
coupling because only in such a case can we substitute the
coupling matrices for coupling coefficients according to Eq.
(5). Nondiagonal couplingrealized by not all system coor-

150

Zilx1-Xjlave

01 dinates for each pair of node$orces us to take the full
' (b) mathematical form of the node system into consideration in
Re(s,) the network synchronization process, which makes simplifi-

cation of the network given by Eq&4) and(5) impossible.
In such cases, other techniques for the determination of the
synchronization condition have to be used, for instance the
0.0 previously mentioned MSF. We would like to point out that
the presented approach can be qualified as a version of the
MSF method, but its possibilities of use in very different
systemgmaps and flowsmakes it widely useful. However,
we want to stress that the results have been obtained in a
o1 different \{vay_from t_he'MSF. In the Appendix, we present the
" 0.00 ) 0.01 synchromza_ﬂon criteria ana_llogous to mequallt_(GSZ) and
(19) but derived on the basis of the MSF for diagonal cou-
FIG. 7. Bifurcation diagram of averageajectories separations pling. The comparison of both approaches confirms the
vs coupling coefficienta) and corresponding eigenvalues of DSSM above conclusion that the method based on the DSSM can be
[Eq. (48)] (b) for ten Duffing oscillators with random structure of treated as the version of MSF for the case of diagonal cou-
coupling[Eqg. (47)]. pling.
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APPENDIX A: MASTER STABILITY FUNCTION FOR THE
SYSTEMS WITH DIAGONAL COUPLING

We apply the idea ofmaster stability functionf21,22 for

the case when the coupling between nodes is diagonal. It wi
follow that only the largest Lyapunov exponent of the node
system and eigenvalues of the coupling matrix are releva

for complete synchronization.

1. Time-continuous systems

Consider the system of coupled oscillaton®des of the
form

X; = f(x;) + 2 GyH (X)), (A1)
r=1

wherej=1,2,... N. The dynamics of the individual node is
described, respectively, by

)'(i = f(Xi) . (AZ)

Herex; e R™ is anm-dimensional vector of variables for
each nodej=1,2,... N. We assume the function of the
node’s variabledd(x), which is used in the coupling, is of
the form H(x)=x, which indicates the diagonal linear cou-
pling. The matrix of coupling coefficient$G;;} satisfies
3),G;;=0 so that the synchronization manifalg=---=xy
is invariant.

Following[21,23, the systeniEq.(Al)] can be written in

the form
X=F(X)+ (G ® )X, (A3)

wherex=(x;=...=xy), F(X)=f(xy),...,f(xy), and ® is the
direct (Kroneckej product of two matrices. Lekq(t)=---

PHYSICAL REVIEW E 70, 026217(2004)

and is characterized by the maximal Lyapunov expongnt
Ehen the variations in EqA5) will be described by the trans-
verse Lyapunov exponent + y. If the real part ofa+ vy is
negative, then the completely synchronous mottn will
be stable transversely. Therefore, the condition

N +tRey<O0 (A7)

can serve as a simple criterion for the complete synchroni-
ﬁation of the systenfiEq. (A1)] of coupled oscillators. Here
1 is the maximal Lyapunov exponent of the uncoupled sys-
m[Eg.(A2)] andyis the eigenvalue of the coupling matrix
with maximal real par{one zero eigenvalue, correspond-
ing to the motion along the synchronization manifold, must
be excludey

2. Maps

The previous analysis can be generalized for the case of
coupled maps,

n

X1 = (XD + 2 Gyf(x),
j=1

(A8)

wherei,j=1,2,... N. The dynamics of the individual node
is described, respectively, by

X, =f(x). (A9)

The matrix of coupling coefficient$G;;} satisfiesEJ!\'zlGij
=0. Let & € R™ be the variation of théth node around the

completely synchronous solutiogf=---=x\=s,. Then, for
the collection of variationg=(¢', ... ,&V), we have

§n+1: [IN ® DF(S’]) +G® DF(SW)]gn-

The systenfEq. (A10)] can be block diagonalized with the
blocks

(A10)

71 = DF(S)[L + §l 7, (A11)

=xXn(t)=s(t) be a completely synchronous solution, satisfyingwhere 7%« R™ are new variations angl, are eigenvalues of

s=f(s), and let; e R™ be the variation of thé&h node around
this solution. Then for the collection of variation§
=(&,...,&) we have

£=[Iy® DF(s(t)) + (G ® 1)1, (A4)

wherely andl,, are unit matrices of sizBl X N andmXxm,
respectively. The systerfiEq. (A4)] can be block diagonal-
ized with the blocks, cf[21,22,

7= [DF(S) + ndm, (A5)

where 7, € R™ are new variations angh are eigenvalues of
the coupling matrixG. Equation(A5) can be transformed
into the system

7=[DF(s)]n (A6)

the coupling matrixG. It is clear that the stability of the zero
fixed point of Eq.(Al1l) is characterized by the maximal
Lyapunov exponenk, which is related to the corresponding
quantity \, for the equation

7n+1=[DF(s)] 7, (A12)

as follows:A=\;(1+y,). As a result, the stability condition
for a transverse mode is

ML+ <1, (A13)

where\, is a maximal Lyapunov exponent of the uncoupled
system[Eq. (A12)] and vy is an eigenvalue of the coupling
matrix G. In order to achieve the complete synchronization,
inequality(A13) must be satisfied for all eigenvalug®f the
matrix G, except oney=0, which corresponds to the motion

by the change of variableg,— 7 exp(yt). Since the system within the synchronization manifoldOf course, additional
[Eqg. (A6)] describes the variations for uncoupled oscillatorszerosy=0 can appear also in the transverse direction.
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