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Abstract

The way in which subsequent types of mechanical systems with impactsnwitbgrees of freedom arise and their
classification are shown. The presentation of classification principles is a new compilation, according to the knowledge of
the authors. The paper answers the question: how many types of systems with impacts exist in general and what these types
are, and it leads to numerous conclusions, as well as shows directions of future investigations. Systems with one and two
degrees of freedom are considered in detail. The models of systems under consideration are rigid bodies connected by means
of, for instance, springs, which can perfoemmotion along a straight line without agmibility of rotations For such systems,

a complete spring—impact classification has been presented. A simple way of the notation of mechanical systems with impacts,
consistent with the principles of the classification developed, has been proposed. The presented classification principles of types
of mechanical systems with impacts are of fundamental importance in their designing processes.

0 2004 Elsevier SAS. All rights reserved.

Keywords. Basic spring system; Basic impact system; Apt combination; Inapt combination

1. Introduction

The investigations devoted to systems in which a phenomenon of nonsmoothness caused, for instance by impacts or dry
friction, occurs, are becoming more and more important andenand more frequently analysed, despite the fact that their
description by means of classicahthematical methods involves many difficultieately, a survey of analytical and numerical
methods for analysis of such systems has been published (Awrejcewicz and Lamarque, 2003). As these systems are the
noncontinuous ones, chaotic motions that give a way to a thorough analysis in the field of the theory of bifurcation and chaos
occur in them as well, apart from regular behaviour.

In the world literature, one can meet various mechanical systems with impacts (see, e.g., references). They are called impact
oscillators (the literature plished in English (Bishop, 1994)) or vibro-impasystems (the literate published in Russian
(Babitskii, 1978)). In Fig. 1, a few schemes of mechanical systems with impacts that can be technically realised as models of
impact vibration dampers, have been presented. The reader has probably noticed that they differ as far as the design of their
component elements is concerned, which results in their various dynamical behaviour. The system shown in Fig. 1(a) is a body
of a certain mass 1 connected with a frame by an elastic supporting structure. A second body of mass 2 is connected to it by
means of a similar structure. A fender (symBoturned by 90) mounted in a fixed way is an additional element in system 1,
thus under some properly agsid initial conditions, one-sided impacts can @dnuhis system. The system in Fig. 1(b) differs
from the one in Fig. 1(a) as it has an additional fender. This time, two-sided impacts can occur in the system. A similar situation
can occur in the system depicted in Fig. 1(c), however in this case a body of mass 2 does not have any supporting structure. Such
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Fig. 1. Schemes of various typef impact vibration dampers.

structures are not presdior bodies of mass 2 and 3 in Fig. 1(d), either. Fie)lshows another posdity of the solution of the
support of bodies. Each body (of mass 1 and 2, respectively) has an independent structure that supports it with the frame. A body
of mass 1 is equipped with two, fixed fenders that make two-sided impacts possible in the system. For all the above-described
cases (Fig. 1(a)—(e)), the common characteristic feature lies in the fact that fenders that are mounted to one body in a fixed way
displace with it. Slightly different cases are represented by the systems in Fig. 1(f) (two degrees of freedom) and Fig. 1(g) (one
degree of freedom). In both the systems, two-sided impacts take place, but this time they are impacts on the frame.

While analysing the studies devoted to mechanical systems with impacts, one can state that researchers have focused on
systems that differ in various aspects, namely:

(A) number of degrees of freedom — systems with one degree of freedom (e.g., Awrejcewicz and Lamarque, 2003; Babitskii,
1978; Blazejczyk-Okolewska et al., 1999; Cempel, 1970; Peterka, 1971, 1981; Peterka and Blazejczyk-Okolewska, 2004),
two degrees of freedom (e.g., Awrejcewicz and Lamarque, 2003; Babitskii, 1978; Bapat, 1998; Blazejczyk-Okolewska
and Kapitaniak, 1996; Cempel, 1970; Peterka, 1971, 1981; Peterka and Blazejczyk-Okolewska, 2004), three degrees of
freedom (e.g., Cempel, 1970), etc.;

(B) number of limiting stops (fenders) — with one-sided iting stops (e.g., Cempell970; Peterka, 1971, 1981) or two-
sided limiting stops (e.g., Blazejczyk-Ollewska et al., 1999; Blazegyk-Okolewska and Kaganiak, 1996; Cempel, 1970;
Peterka, 1971, 1981, Peterka and Blazejczyk-Okolewska, 2004);

(C) way the limiting stops displace (e.g., Peterka, 1971;Retand Blazejczyk-Okolewsk&004) or do not displace (e.g.,
Peterka, 1981);

(D) designs of the supporting structure — systems in whichstigporting structures of subsystems depend on one another
(e.g., Blazejczyk-Okolewska et al., 1999; Blazejczyk-Okolewska and Kapitaniak, 1996; Cempel, 1970) and systems with
the subsystems that have independent supporting structures (e.g., Blazejczyk-Okolewska et al., 2001; Cempel, 1970);

(E) type of forces that occur in the system — elasticity forces (e.g., Bajkowski, 1996; Bapat, 1998; Blazejczyk-Okolewska et
al., 1999) and energy dissipation forces as, for instance, viscous damping forces (e.g., Blazejczyk-Okolewska et al., 1999;
Peterka, 1971, 1981; Peterka and Blazejczyk-Okolewska, 2004) or friction forces (e.g., Blazejczyk-Okolewska et al., 1999;
Blazejczyk-Okolewska and Kapitaniak, 1996; Chin et al., 1994; Hinrichs et al., 1997; Peterka, 1981);

(F) number of excitations applied — to one body (e.g., Awrejcewicz and Lamarque, 2003; Babitskii, 1978; Bajkowski, 1996;
Bapat, 1998; Blazejczyk-Okolewska et al., 1999; Blazejczyk-Okolewska and Kapitaniak, 1996; Cempel, 1970; Chin et al.,
1994; Fu and Paul, 1969; Goyda and The, 1980; Hinrichs et al., 1997; Kaharaman and Singh, 1990; Lin and Bapat, 1993;
Mashri and Caughey, 1966; Natsiavas, 1993; Nguyen et al., 1987; Nigm and Shabana, 1983; Nordmark, 1991; Peterka,
1971, 1981; Peterka and Blazejczyk-Okolewska, 2004; Senator, 1970; Shaw and Holmes, 1983; Tung and Shaw, 1988) or
to two or more bodies (e.g., Blazejczyk-Okolewska et al., 2001; Luo and Xie, 2002);

(G) kind of excitation — kinematic (e.g., Lin and Bapat, 1993) or dynamic (e.g., Peterka, 1971, 1981);

(H) characteristics of the forces analysed in the system -ti@gtgsorces: linear (e.g., Peterka and Blazejczyk-Okolewska,
2004) and nonlinear (e.g., Blazejczyk-Okolewska et al., 2001; Shaw and Holmes, 1983), damping forces: linear (e.g.,
Peterka, 1981; Peterka and Blazejczyk-Okolewska, 2004) and nonlinear (e.g., Mashri, 1966), friction forces: linear (e.g.,
Blazejczyk-Okolewska and Kapitaniak, 1996; Peterka, 1981) and nonlinear (e.g., Blazejczyk-Okolewska and Kapitaniak,
1996);
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() kind of limiting stops — rigid limiting stops (e.g., Blaasgyk-Okolewska and Kapitaniak, 1996; Chin et al., 1994;
Nordmark, 1991; Peterka and Blazejczyk-Okolewska, 2084jt limiting stops (e.g Kaharaman and Singh, 1990;
Lin and Bapat, 1993; Natsiavas, 1993; Shaw and Holmes, 1983).

The division of mechanical systems with impacts with respect to the kind of limiting stops (item (1)) has been made on the
basis of possible ways of impact modelling. In both cases, the coefficient of stiffrisghe decisive one. A simplified way
of impact modelling consists in the assumption that the impact duration is infinitely short and the coefficient of restitution that
represents energy dissipation has a constant value. Then, the way the impact occurs becomes closer to an impact on a rigid
limiting stop & — oo). This way of impact modelling is usually not sufficient, as the coefficient of restitution depends on the
impact velocity and the impact duration is not infinitely short. Thus, some new tendencies of building models that allow for
a more correct description of the impact process, which has a finite time of duration and becomes closer to an impact on a
soft limiting stop, have appeared. In this case, we are abéelect the way limiting stops @modelled (linear and nonlinear
structures, for instance elastic, elastic-damping or triple combinations). In the literature, such systems are often referred to as
piecewise linear oscillators, as in Show and Holmes (1983) pagnoscillators with clearance, as in Lin and Bapat (1993).

A comparison of vibro-impact systems has been made abavs@me their characteristic features have been pointed out.
Owing to the fact that the majority of the systems analysed in the references quoted is characterised by a few features described
here at the same time, a proposition has arisen that it is possible to tgkaef mechanical systems with impacts, in other
words, models, to which a certain series of forms of defined structures of component elements (referred to as subsystems
further on) and of defined characteristic features will correspond. Analysing the above-mentioned, one can state that at least
two rigid bodies (rigid elements that cannot be divided into any other elements, such that one of them can be the frame — then
the system becomes a system with one degree of freedom, as, e.g., Cempel (1970), Chin et al. (1994)), which dependent on
each other functionally and such that an excitation force which causes a change in the state of the whole system acts on one
of them at least, constitute a type of the system. These elsncan be connected with eaclhet in a different way, which
allows for reconstructing reological properties of the system under consideration. The term reological properties refers here to
the relationships of internal forces acting between individual masses of the model that are caused by their displacements with
respect to one another and by time.

In the literature devoted to the subject scope considered here, the notion of “types of mechanical systems with impacts”
have appeared with reference to vibration dampers. Several types of impact dampers were investigated by Peterka (1971, 1981).
Paper | (Peterka, 1971) explains theoretically the general properties of the fundamental periodic motion of three essential
types of impact dampers (Fig. 1(a)—(c)). Its main contribution lies in the general determination of the possible existence of
two different solutions of the periociimotion and in the deritgn of explicit equations fothe stabilityboundaries. The
properties of the motion of impact dampers with two-sided impacts and elastic coupling of masses are described in detail in
paper Il (Peterka, 1971). In paper 1l (Peterka, 1971), the author indicated two possible ways of application of dampers for which
the optimum values of parameters were determined and the amplitude characteristics of damped mass motion were established.
The influence of the dry friction force acting on the relative motion of masses of the system described in Peterka (1971) was
shown in Blazejczyk-Okolewska et al. (1999). Monograph (Peterka, 1981) includes a collection of schemes of various impact
vibration dampers (Fig. 1(b)—(e)) and schemes of different types of systems with impacts (Fig. 2). Fig. 2 is a reproduction of the
original figure from the paper by Peterka (1981) and it shows systems that can be models of structural elements in the devices
for vibro-impact machining, for ramming moulding mixes, concrete, etc.

While discussing the works devoted to types of mechanical systems with impacts, one should not forget about the study by
Cempel (1970), who defined the impact force of the distributional nature and obtained a simple way of the generation of motion
equations of vibro-impact systems. He obtained solutions to these equations using the operational calculus, and for systems
with many degrees of freedom — introducinddiionally normal co-ordinates. In this wehe solved the mblem of vibrations
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Fig. 2. Schemes of differs types of structures in the devices for vibro-impact machining (Peterka, 1981).
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for — as he has written — a few most important types of vibro-impact systems. For systems with one degree of freedom, Cempel
differentiates between systems with one-sided and two-sided impacts (Fig. 2(a) and Fig. 1(g), correspondingly). Systems with
two and many degrees of freedom are divided by him into systems with: impacts on the barrier (Fig. 1(f)), internal impacts in
the system (Fig. 1(b)), impacts of two independent systems (Fig. 1(e)), and impacts of the main system on the semi-defined
one (Fig. 1(c)).

During a few years of the investigations on systems with impacts that have been conducted by the authors, the following
guestion has arisen: how many types of systems with impacts exist in general and what these types are. It has been established
that systems with impacts have not been classified yet and actually there is no publication in which their number is stated clearly
and which presents all types of such systems. The basic reason that has made the authors start investigating this issue is the fact
that the described scientific problem exists, concerns a wide range of technical devices and has not been solved so far.

Thus, the scientific objective of this study is to present the way in which subsequent types of mechanical systems with
impacts arise and to develop principles of their classification.

The significance of the problem under consideration is manifested by a great number of publications devoted to motion
of systems with impacts. In these publications, many applications can be met, for instance: physical models of buildings
that are used to predict effects of earthquakes (Natsiavas, 1993; Nigm and Shabana, 1983), pile-drivers for piles or pipes
in oil mining, rammers for moding mixes, crushers, riveting pressésmmer drills (Babitskii, 1978; Bajkowski, 1996;

Fu and Paul, 1969; Kobrinskii and Kobrinskii, 1973; Senator, 1970), vibration dampers (especially in devices working under
high temperatures and in railway engineering) (Bajkowski, 1996; Bapat, 1998; Mashri and Caughey, 1966; Nguyen et al., 1987;
Peterka, 1971; Peterka and Blazejczyk-Okolewska, 2004), low-loaded toothed and cam gears (Kaharaman and Singh, 1990;
Lin and Bapat, 1993; Natsiavas, 1993; Nguyen et al., 1987), vibrating conveyors, bar screens, gun lock mechanisms, electric
automatic cut-outs (Nguyen et al., 1987), printing heads in needle printers (Babitskii, 1978; Bapat, 1998; Fu and Paul, 1969;
Kobrinskii and Kobrinskii, 1973; Senator, 1970; Tung and Shaw, 1988), heat exchangers (Blazejczyk-Okolewska and
Czolczynski, 1998; Goyda and The, 1980; Lin and Bapat, 1993).

2. Fundamental assumptions

The basic classification principles of types of mechanical systems with impacts are strictly connected with the notion of
degrees of freedom, that is to say, the@ number of independent co-ordinates that define the system configuration.

One of the first assumptions is as follows: the models of systems under consideration are rigid bodies connected by means
of, for instance, springs, which can moatng the straight line withow possibility of rotations. Alassical example of the
vibrating mechanical system with one degree of freedars 1) is a body with the masa suspended on a spring with the
stiffnessk in such a way that it can move along one straight line only. Then, the quantgfines explicitly its position with
respect to the static eijprium position (Fig. 3(a)). The most generahdamped system with two degrees of freedom can
be depicted as in Fig. 3(b). It consists of two bodies with the masageandmo, respectively, suspended on the sprikgs
andko and connected by the coupling sprikg. Assuming that the bodies can move along the vertical line only (the basic
assumption) and that both the masses can move independently, this system has two degrees ofifrec)or@iving the
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Fig. 3. Schemes of mechanical systems: (a) basic spring system=fdr, (b) basic spring system far= 2, (c) system withw = 3 that is not
the basic spring system.
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valuesxq andxo, we define explicitly the position of the whole system. The body with the masdefined by the positiom;

will be referred to as the first subsystem, whereas the body with the /madescribed by the positiomy will be called the

second subsystem. In the light of the above-mentioned, théeuaf subsystems is equal to the number of degrees of freedom.

A system composed of three subsystems is a system with three degrees of freedom, in which the gyantitiesz define

explicitly the system position (Fig. 3(c)). In general, it can be said that a systemdegrees of freedom (i.ez, subsystems)

if its position is described by quantities. Fig. 3 shows basic schemes of systems with one (Fig. 3(a)), two (Fig. 3(b)) and three
degrees of freedom (Fig. 3(c)), in which elastic elements are depicted as springs that play the role of a connecting structure
between the subsystenis §, k»3), that is to say, between the subsystems and the fcantg, ko, k3).

The next assumption consists in neglecting the mass of elastic elements, which causes that their dynamic characteristics
coincides with the static characteristics in the range of positioftrzes. In real mechanical systems, the forces that dissipate
energy always occur apart from these forces. They can be damping forces (the symbol denoting a damper occurs in the physical
model) or other forces, e.g., friction forces (the symbol regméeg friction is used then in the physical model), which are not
represented in Fig. 3.

In the below-described classification of types of mechanical systems with impacts, proposed by the authors, the forces
dissipating energy (except impact forces of course) have been neglected in order to simplify the procedure in the initial stage of
the analysis. The rules of this classification are as follows:

(1) We determine the number, i.e., the number of degrees of freedom of the mechanical systendo\Wat change this
number while comparing the selected masses to zero or the selected stiffnesses or masses to the value equal to infinity. On
the basis of this number, we decide on the number of subegsthe number of degrees of freedom equals to the number of
subsystems).

(2) We build a system with the specified number of degrees of freedom, on the basis of two rules, namely:

(a) Each subsystem is connected with another one by a spring. Each subsystem is connected with the frame also by a spring.
In this way, thebasic spring system with the number of springsis formed:

nin—1)
s=n+ > 1)

This formula can be justified in a simple way. The basic spring system with one degree of freedom can look as the one in

Fig. 3(a) @ =1, s =1). The basic spring system with two degrees of freedom can look as the one in Fig: 3(B) ¢ = 3).

Fig. 3(c), despite the fact that it represents aesat of the system with three degrees of freeddwas not show — according to

the author’'s assumptions — the basic system with three degrees of freedom. On this scheme, two spring connections are lacking
— the springcs connecting the body of the mags with the frame and the spring 3 connecting the body of the magg with

the body of the masa3. The basic spring system with three degrees of freedom is shown in Fig=8, s = 6).

(b) Each subsystem impacts on any other subsystem and the frame at both possible senses of the relative velocity. Thus, the
basic impact system with the number of fendersis formed:

z=nn+1). 2

This formula can be justified in an easy way. The basic impact system with one degree of freeddindan look as the one

in Fig. 5(a), and the number of its fenders is equal to twe: Q). The symbol T " in the figure denotes that the upper fender
719 Occurs, whereas the symbal” means that the lower fendefq occurs, and both the fenders can impact on the frame. The
basic impact system with two degrees of freed@m- 2) can look as the one in Fig. 5(b), and the number of its fenders equals
six (z = 6). Each subsystem has two fenders impacting on the frame — for the subsystem of the;mhey are the fenders
71g andz14, whereas for the subsystem of the mags— the fenders denoted lyg andzog (the upper and lower fender,
correspondingly), and the two fendersyg and z124 (the upper inner fender and the lower inner fender, respectively) that

Fig. 4. Basic spring system far= 3.
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Fig. 5. Basic impact systems: (@)= 1, (b)n =3, (c)n =3.

enable impacts between the subsystems. The basic impact system with three degrees of(free@pim shown in Fig. 5(c),
and the number of its fenders is equal to twelye= 12). Each subsystem has two fenders that impact on the frame — for the
subsystem of the mass;, they are the fenders denoted byy and z14, for the subsystem of the mass — zp4 andzag,
for the subsystem of the mass; — z3g andzzq, and six inner fenders that enable impacts between the subsystems. They are
referred to as followsz1 2 andz124 (the inner fenders between subsystems 1 angh3),andz;34 (the inner fenders between
subsystems 1 and 3);3g andzz3q (the inner fenders between subsystems 2 anHe3)us notice that the symbol of the fender
used on drawings does not impose the way of modelling. Thisphenomenon can be modelled depending on the physical
circumstances that are to be considered and solved.

There is a relationship between the number of fendensd the number of springssuch that:

z=2s. 3)

Combining principles (a) and (b), we form ohasic spring—impact system, in which every subsystem is connected with any
other subsystem (each subsystem is connected with the frawglaand it impacts on any other subsystem (every subsystem
impacts on the frame as well). Fig. 6 shows basic spring—impact systems for the system with one degree of freedom (Fig. 6(a)),
for the system with two degrees of freedom (Fig. 6(b)), and for the system with three degrees of freedom (Fig. 6(c)).

Let us notice that if we remove even one spring from the basic system (or even one fender), we obtain another system, which
is a particular case of the basic spring—impact system.

In order to determine the number of particular cases of the spring—impact system, that is to say, of possible combinations of
arrangements of springs and fenders, we should form particular cases of the basic spring system, eliminating one spring, two
springs, etc., from the basic spring system (i.e., the one in which there is a certain number of springs, but there are no fenders at
all —for systems: = 1, n = 2 andn = 3 — Figs. 3(a), (b) and Fig. 4, correspondingly). The number of particular cases of spring
combinations (with various configurations of springs) is determined by the following formula:

iy =2 (4)

On the other hand, particular cases of the basic impact system should be formed from the basic impact system (i.e., the one in
which there is a certain number of fenders, but there are no springs — for systeris n = 2 andn = 3, — Figs. 5(a)—(c),
respectively), eliminating one fender, two fenders, etc. The number of particular cases of impact combinations (with different
configurations of fenders) is determined by the following formula:

ip =2%. (5)

In the case of a one-degree-of-freedom systemm 2, i; = 4. A thorough analysis fot = 1 is included in Section 4. In the
case of a system with two degrees of freedgra 8, i; = 64. A detailed analysis for = 2 is presented in Section 3.
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Fig. 6. Basic spring—impact systems: fax 1, (b)n =3, (c)n = 3.
Table 1
Exemplary way of the formation of spring—impact apt and inapt combinations o2
iq—s = 4 — examples of spring apt combi- i;_, = 4 — examples of spring inapt combi-
nation configurations nation configurations
iq—; =48 — examples of impact apt combi- ig—s; = ig—s X ig—7; =4 x 48 =192 — iz 5 = ij_g X igq—7 =4 x 48 =192 —
nation configurations examples of spring—impact apt combinationexamples of spring—impact apt combination
configurations configurations
ij_, = 16 — examples of impact inapt com- iy —s; = igq—s X ij_; =4 x 16 =64 — ij_g; =ij_g X ij_; =4 x 16=64 — ex-
bination configurations examples of spring—impact apt combinationamples of spring—impact inapt combination
configurations configurations

We obtain all possible particular casestlod basic spring—impact system matching each case of the spring configuration of
the basic spring system with each case of the fender configuratiorthuf basic impact system.

This phase is called phase | (multiplication phase), and the number of all possible combinations of arrangements of springs
and fenders (i.e., particular cases of the basic spring—impact system) is determined by the following formula:

ig; =25 2% =212, (6)

In the case of a system with one degree of freedom, the nuimber8, for a two-degree-of-freedom systeni-= 512.

Formula (6) is the formula in which only the presence of springs and fenders is taken into consideration, and thus it does not
account for the presence of other elements that connect the subsystems, for instance dampers or external excitation. This piece
of information is very important, bearing in mind the fact that in the case when also damping connections are taken into account,
then the number of possible combinations alters significantly (for instance, for a system with two degrees of freedom with the
maximum number of springs, fenders and dampers, from 512 to 4096 — see Table 1). Although there is not any real system
without damping, it has been resolved to neglect damping in itialiphase of the development dissification principles. It
will simplify the calculations and facilitate the analysis of the generation method of types of systems with impacts. In the initial
analysis, the effect of the external excitation has been neglected as well, as it also changes the number of possible combinations
of particular cases (see Table 2).

Phase Il (elimination of inapt combinations) comprises three subphases, namely:

(@) Subphase I: Elimination of these particular cases, in which the basic spring—impact system has been divided into two or
more independent systems that are connected neither bing sr by impact. As far as a two-degree-of-freedom system
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Table 2
Configuration cases for=1 andn = 2

Number of spring—impact
configuration cases
iy = 25+z

Number of spring—
impact—damper
configuration cases

Number of spring—impact—
damper—excitation
configuration cases

isd = 2‘\‘+Z+d isde = 2S+Z+d+e
System 1. System with one degree of is; =8 iszqg =16 Iszde = 32
freedom with the complete configura-
tion of connections As — k1/z— 219 1/s = k1/z — 219 formula (7)

System 2. System with two degrees of
freedom with the complete configura-
tion of connections

z, T ‘zzg
kx’ ty
¢ P
Tl 7l A
l ¢ J-C

— z14/d — 0/e - 0

is; =512 including:
— apt conabions

ig_sz =448,

— inapt combinations

ij—s; =64

2/s — k1 — k12

—> k2/z— z19—> 229
— 2129~ Z12d > Z1d
— z24/d — 0/e - 0

— z1d/d — c¢1/e — 0

iszq = 4096 including:

— apt combinations

iq_szq = 3840,
— inapt conmations
ij—szd =256

2/s — k1 — k12

—> k2/z— z19—> 229
— 2129~ 212d — Z1d
— z24/d — ¢1 —> c12
— cp/e—0

iszde = 16384 including:
— apt combinations

iq—szde = 15360,

— inapt combinations

ii—szde = 1024

formula (8)

is concerned, the system presented in Fig. 7(a), which does not have either thekgpranghe inner fenders; o, and
7124 is an example and therefore it should be eliminated in the spring—impact classification.
(b) Subphase II: Elimination of the particular cases that are identical because of:
— symmetry of the systems (see, e.g., Fig. 7 (b) and (c)),
— symmetry of the systems after changes in the numbergirgfdo subsystems (the last subsystem is the first one, the
system one but last is the second one, and the system two but last is the third one, etc., see Fig. 7 (d) and (e)).

The system depicted in Fig. 7(b) is capable of performing identical motions as the system in Fig. 7(c) (assuming the reverse
sense of the frame of reference), thus one of them should be eliminated. A slightly different situation is presented in Fig. 7 (d)
and (e). The body of the mass; from Fig. 7(d) can perform exactly the same motions as the motions of the body with the
massmy from Fig. 7(e) (assuming the reverse sense of the frame of reference) and, vice versa, the body of the froass
Fig. 7(d) performs identical motions as the motions of the body with the massom Fig. 7(e). From the viewpoint of the
theory of spring—impact classification presented above, one of the systems should be eliminated.

It should be added that for a two-degrefefreedom system, such particular cggaswvhich the basic spring—impact system
is divided into two independent systems and cases identical because of the symmetry and the symmetry after changes in the
numbers referring to subsystems, are significantly more nouseherefore, the analysis of subphase | and subphase Il will
be presented in detail in the further considerations concerning the classification.
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b) 9 ) )

Fig. 7. Examples of the spring—impact combinationsifes 2; (a) inapt combination in which the basic spring—impact system is divided into
two subsystems, (b) and (c) cases identical due to the symmetry ofdtesrsy (d) and (e) cases identical due to the symmetry of the systems
after changes in the numbers nefieg to individual subsystems.

(@) Subphase lII: Elimination of these particular cases thf¢rdbecause they have a given fender or do not have it in the
situation when the fender does not impact on anything atpalisive fender). The elimination criteria in this subphase
follow from the relationships between the dimensions of the basic spring—impact system (i.e., the geometrical dimensions
are meant here), which are to be described furthdrercbnsiderations concerning the classification.

It has been stated that the inaptness of combinations of whole groups of variants of springs and fenders can be predicted on
the basis of their specific properties. For instance, a system with two degrees of freedom that arises from a combination of a
spring variant with a whole group of variants of fenders is characterised by the fact that it does not admit (predict) possibilities
of mutual impacts due to a lack of internal fenders and a lack of an inner spring connection.

Now, let us introduce the notion of tteene of aptness.

In each combination originated from the basic spring system (Fig. 8) and in each combination that arises from the basic
impact system (Figs. 9—12), there are some features that decide about the aptness. These features will be refleerzshéo as
of aptness. The zone of aptness plays a role of the informant between the subsystems and if it exists in a given combination, each
body gets information (learns) about the existence of other bodies thanks to it. On the schemes representing spring combinations,
it is the zone of spring aptness, whereas on the schemes showing impact combinatidhs zene of impact aptness.

The above-mentioned rules will be discussed in detail for a system with two degrees of freedom and a system with one
degree of freedom.

3. Classification principles of systemswith two degrees of freedom

As the first one, a system with two degrees of freedom, i.es,2, has been considered. This is the system, on whose
example the way of reasoning and the classification of possible variants, can be shown in the easiest way.

The maximum number of springs (spring connections), according to formula (1), eqgdégk, — spring connecting the
massm1 with the frame k15 — spring connecting the mass; with the massny, ko — spring connecting the mass, with
the frame). All possible springs and their symbols are represented in Fig. 6(b) or in System 2, Table 2. The number of possible
combinations of systems from the basic spring system is determined from formula (4), which yields thg reSulin Fig. 8,
all possible combinations of springs for a twegree-of-freedom system have been depicted.

The zone of spring aptness lies between mass 1 and 2, and this zone is formed by orig sprihg which decides whether
the basic spring system will be divided into two subsystemsadi(in this case, only two subsystems). In the case of another
system, a division into two or more subsystems can occur of course and the presence of a higher number of springs can decide
about this division. If we reduce the total number of springs (three springs) by the number of springs from the zone of spring
aptness (one spring), then we will obtain the number of springs equal to two, which yields the number of possible combinations
beyond the zone of spring aptness equal 46=24. This number multiplied by the number of combinations of these spring
connections that decide about the aptness (there is one such a connection), that i tg sa¥ x 1 =4, is the number of
spring apt combinations (see Fig. 8 — combinations of springs (1)—(4)). The number of possible combinations beyond the spring
aptness zone multiplied byn¢ number of combinations of thespring connections that decidbout the inaptness (there is
one such a connection), that is to say; = 4 x 1 =4, is the number of spring inapt combinations (see Fig. 8 — combinations
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Fig. 8. Possible spring combinations tlagitse from the basic spring system foe= 2; (1)—(4) with the spring aptness zone (spring), (5)—(8)
— without the spring aptness zone.

of springs (5)—(8)). The number of spring apt combinations added to the number of spring inapt combinations gives the result
equal to the previously calculated one, according to formulés(4)i,—s + i;_y = 4+ 4 = 8. Fig. 8 (combinations of springs
(1)—(8)) shows all possible combinations originated from the basic spring system for a system with two degrees of freedom. The
crucial information is such that there will be no impacts in these systems as there are no fenders in them (there are no symbols
T and_L defined before).

The same analysis has been carried out for impact connections. The maximum number of fenders (impact connections),
according to formula (2), is equal to= 6. These are the following connectionggy — upper impact connections of the mass
my with the framez;4 — lower impact connection of the magg with the frame z1 54— upper impact connection of the mass
m3 With the massny, z124— lower impact connection of the masg with the massny, z2g— upper impact connection of the
massn with the framezoq — lower impact connection of the mags with the frame. All possible fenders with the symbols
denoting them are presented in Fig. 6(b) or in System 2, Table 2. The number of possible combinations of systems from the
basic impact system is determined from formula (5), which yields the rgsal64. Combinations (1)—(16) in Figs. 9—12 show
all possible combinations of impact connections for a two-degree-of-freedom system.

The zone of impact aptness lies between masses 1 and 2, and this zone is formed by twoziggderd z124, Which
decide whether the basic impact system will be divided into two subsystems or not (in this case, into two subsystems only).
In the case of the system with> 2, a division into two or more subsystems can occur of course and not only the fenders
that connect mass 1 with mass 2 can decide about it. If we reduce the total number of impact connections (six fenders) by the
number of fenders from the zone of impact aptness (two fenders), then we will receive the number of fenders equal to four,
which yields the number of possible combinations beyond the impact aptness zone e§uallt. X his number multiplied by
the number of combinations of these impact connections that decide about the aptness (there are three such connections), that is
to sayi,—; = 16 x 3 =48, is the number of impact apt combinations. Combinations (1)—(16) in Figs. 9-11 show all impact apt
combinations — in Fig. 9, the connection between the masses is made both through the upper impact cenpgatidrthe
lower one —z124, in Fig. 10 — the connection between the masses occurs only through the upper impact connggtamd
in Fig. 11 — the connection between the masses occurs only through the lower impact connegtidhe number of possible
combinations beyond the zone of impactragss multiplied by the number of thesepatt connections that decide about the
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Fig. 9. Possible fender combinations taase from the basic impact system fos= 2, including the impact aptness zone (two fendgtg, and
712d)-
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Fig. 10. Possible fender combinations tagte from the basic impact system for= 2, including the impact aptness zone (fendgsg).
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Fig. 11. Possible fender combinations thase from the basic impact system foe 2, including the impact aptness zone (fendgrg).
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Fig. 12. Possible fender combinations thate from the basic impact system foe= 2, without the impact aptness zone.
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inaptness (there is only one such a connection), that is t¢; say= 16 x 1= 16, is the number of impact inapt combinations.
Combinations (1)—(16) in Fig. 12 show all possible impact inapt combinations where there is neither an upper impact connection
nor a lower impact connection at all. The number of impact apt combinations added to the number of impact inapt combinations
yields the result equal to the result calculated before, according to formulg ), —; + i;—, = 48+ 16 = 64. Figs. 9-12

present all possible combinations originated from th&dnpact system for a two-degree-of-freedom system.

The authors would like to draw the reader’s attention to the fact that in the case of 4 spring apt combinations (Fig. 8 —
combinations of springs (1)—(4)), the body of the magswill learn about the presence of another body of the masgand
vice versa) due to the occurrence of elasticity forces between these bodies (presence of thig gprindurn, in the case
of 4 spring inapt combinations (Fig. 8 — combinations of springs (5)—(8)), the body of themmassgl never learn about the
existence of the body of the mags (and vice versa), because the bodies will never be able to pass the information concerning
their existence due to a lack of a spring connection. In the case of 48 impact apt combinations (all combinations in Figs. 9-11),
the body of the masa:1 will learn about the existence of the second body of the masswing to the existence of impact
forces between these bodies (there exist two fenggrgand zio4 in the case of the combinations in Fig. 9 or at least one
fender in the case of the combination presented in Fig. 10 — ferggror the combination in Fig. 11 — fende{zg). On the
other hand, in the case of impact inapt combinations (1)—(16) in Fig. 12, the body of thenmag# never learn about the
body of the mass:, (and vice versa), because these bodies will not pass any information on their existence due to a lack of
impact forces.

According to the previously assumed principle, next a matching of every particular case of the spring configuration with
every particular case of the fender combinations is carried out. Because of the fact that the number of all possible cases that
follow from the “each-to-each” matching is equal to 512, only one example of the matching is presented. Fig. 13 shows all
spring—impact combinations that originated from the matching of the system with spring combinations (8) in Fig. 8 with the
system of fender combinations (1)—(16) from Fig. 9.

The total number of spring—impact apt combinations in a system with two degrees of freedom gguais 448, whereas
the total number of spring—impact inapt combinations is equial tg = 64. Table 1 presents an exemplary way of the so-called
“each-to-each” matching for a system with two degrees of freedom.

Itis not difficult to state that as a result of the matching of a spring apt combination with an impact apt combination, a spring—
impact apt combination arises. There &res; = iy—s X iq—; = 4 x 48 =192 spring—impact apt combinations altogether and
they are the matchings of all combinations of springs (1)—(4) (Fig. 8) with all combinations of fenders (1)—(16) (Figs. 9-11). As
a result of the matching of a spring apt combination with an impact inapt combination, a spring—impact apt combination arises.
There arg,_; =is—s X i;_; =4 x 16= 64 spring—impact apt combinations and they are the matchings of all combinations
of springs (1)—(4) (Fig. 8) with all combinations of fenders (1)-(16) (Fig. 11). As a result of the reverse matching, that is to say,
of the matching of the configuration of the spring inapt combination with the configuration of an impact apt combination, also
a spring—impact apt combination occurs. Thereigrg, =i; _; x iy;—; =4 x 48=192 such spring—impact apt combinations
altogether and they are the matchings of all combinations of springs (5)—(8) (Fig. 8) with all combinations of fenders (1)—(16)
(Figs. 9-11). In turn, in the case of the matching of the configuration of a spring inapt combination with the configuration of
an impact inapt combination, a spring—impact inapt combination occurs. Thefg are=i; s x i;_, =4 x 16 =64 such
spring—impact inapt combinations altogether and they are the matchings of all combinations of springs (5)—(8) (Fig. 8) with all
combinations of fenders (1)—(16) (Fig. 12).

The above-mentioned considerations referred to the presence of springs and fenders only in a mechanical system with two
degrees of freedom. Fig. 6(b) shows a complete set of springs and fenders (the maximum number of springs and the maximum
number of fenders) together with their denotations. It is one of the cases of a spring—impact apt configuration (the matching that
resulted from the combination of springs (4) from Fig. 8 with fenders (16) from Fig. 9.

The situation becomes significantly simpler during the analysis of a system with one degree of freedom, and it becomes
more difficult for a system with three and more degrees of freedom. The classification of systems with one degree of freedom is
presented below, whereas the classification of systems with three and more degrees of freedom will be developed by the authors
in the future.

4. Classification principles of one-degree-of-freedom systems

For a one-degree-of-freedom system, the number 1. The maximum number of springs, according to formula (1),
equalss = 1 (k1 — spring connecting the mass; with the frame, Fig. 6(a) or System 1 in Table 2). The number of possible
combinations of systems from the basic spring system is determined from formula (4), which yields thig tegulin Fig. 14,
both possible combinations of springs for a one-degree-of-freedom system are presented.

It is difficult to speak about the spring inaptness in this case — the system can have a spring that connects it with the frame
(spring combination (1) — Fig. 14) or can have no spring at all (spring combination (2) — Fig. 14), but the spring does not come
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Fig. 13. Possible combinations that arise as a result of the matching of the system with spring combination (8) in Fig. 8 with the systems with
fender combinations (1)—(16) in Fig. 9.
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Fig. 15. Possible fender combinations these from the basic impact system foe 1.

from the spring aptness zone. Analysing the impact connections, it has been stated that the maximum number of fenders (impact
connections), according to formula (2), equais 2(z14 — upper impact connection of the masg with the frame z14 — lower

impact connection of the mass; with the frame; both the impact connections together with their denotations are included in

Fig. 6(a) or in System 1 in Table 2). The number of possible combinations of systems from the basic impact system is determined
from formula (5), which giveg, = 4. Fig. 15 shows all possible combinations of fenders for a one-degree-of-freedom system.

In the case of a system with one degree of freedom, it is also difficult to speak about the impact aptness: the system can
have both fenders connecting it with the frame (fender combination (1) — Fig. 15) or can have just one fender at the top
(fender combination (2) — Fig. 15) or at the bottom (fender combination (3) — Fig. 15) or can have no fenders at all (fender
combination (4) — Fig. 15), but these fenders do not come from the impact aptness zone.

According to the previously assumed principle, a matching of both the cases of spring configuration with every case of the
fender configuration takes place now. All possible cases @igihfrom the “each-to-each” matching are presented in Fig. 16.

As for a one-degree-of-freedom system, there are neither spring inapt combinations nor impact inapt combinations, then there
are no spring—impact inapt combinations either. All cases of matchings for a system with one degree of freedom (Fig. 16) are

the cases of spring—impact apt combinations. As there are no real systems described by the spring—impact combination (8)
(Fig. 16), this case is an untypical apt combination in the classification proposed. On the other hand, if we take into account an

occurrence of a damping force and external excitation in the system (for instance, a body of the mass mounted in a sleeve, on
which an external force acts), then we observe a motion of the mass and it is the most correct system from the viewpoint of the

theory of vibrations.

Spring—impact combinations (1)—(8) presented in Fig. 16 concern the occurrence of springs and fenders only in a one-degree-
of-freedom system. Fig. 6(a) shows a complete set of springs and fenders (the maximum number of springs and the maximum
number of fenders) together with their denotations. It is onthefcases of the spring—impact configuration (combination (1))
in Fig. 16.

5. Mechanical systemswith damping, excitation and nonlinearity
The object of the detailed considerations included in the present paper are systems with one and two degrees of freedom.

Above, a complete spring—impact classification has been presented for such systems. In the case of presence of dampers
and external excitations, the number of configuration casesases rapidly. Table 2 presents a set of the numbers of the
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Fig. 16. Possible combinations that arise frdrme tnatching of the systems with spring combinations (1) and (2) in Fig. 14 with the systems
with fender combinations (1)—(4) in Fig. 15.

configurations for a one-degree-of-freedom system and for edegoee-of-freedom system. While analysing this table, one
can state that the higher the number of degrees of freedtime faster the increase in the numbeys(number of spring—impact
configurations)j,,4 (number of spring—impact—-damping configuratiorig)y, (number of spring—impact-damper—excitation
configurations).

Many practical issues can be modelled by means of a linear model with the sufficient accuracy, but a more precise description
requires an application of nonlinear models. Nonlinearities of elastic and damping elements belong to typical examples in
mechanical systems. Accounting for these nonlinearities instead of the linearity in the system is not followed by any changes in
the number of possible configurations.

However, if we take into account (apart from damping forceppssibility of occurrence of, fanstance, a friction force,
then the number of configurations grows from 32 to 64 in the case of a one-degree-of-freedom system and from 16 384 to
131072 in the case of a two-degree-of-freedom system.

The verification how many configurations of systems exist requires the knowledge of the number of possible, quantitatively
different connections (formula (2) for the impact connection and formula (1) for all the remaining connections) and then
formula (6), supplemented respectively in the exponent, should be employed (Table 2).

Systems 1 and 2 from Table 2 include a complete combination of spring—impact—damper—excitation configurations. For a
system with one degree of freedom, the following notation is proposed:

1/s — k1/z — z1g—> z1d/d — c1/e > w1, )

where:
1 - one degree of freedom,
s — k1 — spring connection by a spring of the stiffnégs
7 —> 19— z1d — Impact connection by the fendergy andz1q,
d — c¢1 — damper connection with the dampiag,
e — w1 — action of the excitation force.
In turn, for a system with two degrees of freedom, the notation is proposed as follows:

2/s = k1 — k12— k2/z — z1g—> z2g —> 212g—> Z12d—> Z1d — 22d/d — c¢1— c12 —> c2/e — w1 — wy, (8)

where:
2 —two degrees of freedom,
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Table 3

Examples from the references and the notations of the systmsidered in them, according to the classification principles

Example from the literature and notation of the system under consideration

Blazejczyk-Okolewska et al. (2001)

F,sin (®,t + )

2/s = k1 — kp/z — z12d/d = ¢1 — c2/e —> w1 — wo

Cempel (1970)

TIIIILI17777777,

1/s — k1/z — z1g— z1d/d — c1/e > w1

Chin et al. (1994)

F sin o, ¢

1/s > k1/z = zad/f — f1/e > w1

Luo and Xie (2002)

F,sin ot+¢@

F sin o+

2/s — k12— ko/7 — z1d/d — c12 —> c2/e > w1 —> W

Mashri and Caughey (1966)

HZHN
- F, sinm, ¢t
m, —>

ANAANNANNNNNNNN

2/s — k1/z = z12g—> z12d/d — c1/e —> wy
Peterka and Blazejczyk-Okolewska (2004) in press

F,sin o¢

¢, k
: ]

_ m |

= VVWWY 2

m
k, !

2/s — k1 — k12/z — z12¢g— z12d/d —> c1 —> c12/e —> w1

Shaw and Holmes (1983)

Cos Wf
<>
¢ _k k
_E._] 21 e
/\/\/\/\N\II W
() ()

1/s — k1/z — z14/d — c1/e = w1

Lin and Bapat (1993)

- b(t)

1/s = k1/z — z1g— z1d/d —> c1/e > w1
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s — k1 — k12 — ko — spring connections by springs of the stiffneskgéspring connection of the subsystem of the mass
m1 with the frame) k12 (spring connection between the subsystems of the masgsesidmy), k2 (Spring connection of the
subsystem of the mass, with the frame), respectively,

7= 219~ Z2g—> 7129~ Z12d —> Z1d —> Z2g— impact connections by the fendefs, (impact connection of the subsystem
of the massn; with the upper frame)zog (impact connection of the subsystem of the magswith the upper frame)z12g
(upper impact connection between subsystems of the magsasdmy), z124 (lower impact connection between subsystems
of the masses; andm»), z14 (impact connection of the subsystem of the magswith the lower frame),zoq (impact
connection of the subsystem of the masgswith the lower frame), respectively,

d — ¢1 — c¢12 — c2 — damper connections with the damping (damper connection of the subsystem of the mags
with the frame),c1> (damper connection between the subsystems of the magseadmy), c¢» (damper connection of the
subsystem of the masgs, with the frame), respectively,

e — w1 — wyp — action of the excitation forces, (on the subsystem of the magsg), wo (on the subsystem of the
massmny), respectively.

In the case any connection is lacking, “zero” can be used in the notation of the system (see Table 2) or this connection can
be neglected (see Table 3).

In the case of occurrence of a friction force in the physical model, the notation of the system should be supplemented with
the symbol of the friction force. This symbol is to used in front of the symbol describing the excitation. The friction force can
act between subsystems or between a subsystem and the frame=(for f — f1,forn=2—-f — f1 — fi2— f2).

When a nonlinearity appears, the way of notation does not alter.

Table 3 includes some selected examples from the literature devoted to the subject and the notations of the systems
considered there, according to the classification principles proposed. The authors of the present study would like to draw
attention to the fact that in the refers quoted there are descripts of systems with various wa of moddling of the impact
process. The proposed way of the notation of systems with impacts imposes certain symbolic meanings of these denotations,
but it is simple and can be used in scientific studies.

6. Conclusions

The way in which subsequent types of mechanical systems with impacts aébrees of freedom arise has been presented
and their classification has been shown. The presentation of classification principles is a new compilation, according to the
author’s knowledge. The paper answers the question: how many types of systems with impacts exist in general and what these
types are, and it leads to many conclusions, as well as shows directions of further investigations.

The subject of the detailed considerations in this paper are systems with one and two degrees of freedom. The models of
systems under consideration are rigid bodies connected by means of, for instance, springs, which can move along a straight line
without any rotations. For such systems, a complete spring—impact classification has been presented. In the case dampers or
external excitations occur, the number of configuration cases grows rapidly. An increase in the number of configurations results
also from a higher number of degrees of freedom.

The classification principles developed take into account aIpitigsbf occurrence of, for instace, a friction force. Then,
the number of possible combinations increases very sharply.

The verification how many configuration cases in the system withgrees of freedom exist requires the knowledge of the
number of possible, quantitatively diffefteconnections in the system, and then theolyment of the formula that determines
the number of configurations.

If a nonlinearity is taken into account in the system (for instance, the nonlinearity of elastic or damping elements) instead of
a linearity, the number of possible configurations does not alter.

References quoted in the present paper include the analysis of mechanical systems with impacts and describe the systems
that are particular cases of the basic spring—impact—damper—excitation system proposed by the authors of the present study.
The presented types of mechanical systems constitute a set in which the way of modelling of the impact phenomenon is not the
differentiating parameter. A simple way of the notation of mechanical systems with impacts, consistent with the classification
principles, is provided.

The above-mentioned classification of mechanical systems is of primary importance in their designing processes. The basic
conditions that have to be satisfied by the subsystems are the geometrical conditions that allow for assembling the system and the
geometrical conditions that permit external and internal impacts in the system. Both the types of conditions will be developed
in the future research devoted to the classification of systems with impacts.

The present study gives much information of the fundamental nature that extends the knowledge on the motion of mechanical
systems with impacts. This information can be applied in computations and designing processes of the above-described
structures and can serve as the basis for starting the investigations on mechanical systems with impacts whose motion is
multidimensional.
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