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Abstract

The object of investigations are systems with impacts with one and two degrees of freedom that have been classified by the
authors previously. The models of the systems under consideration are rigid bodies that can perform a motion along a straight
line without a possibility of rotations. The geometrical conditions of assembly and the geometrical conditions of inner and outer
impacts have been determined in this study. According to the authors’ viewpoint, the determination of these conditions will find
an application in calculations and design of the structures described.
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1. Introduction

In a large number of diverse engineering fields, design or working conditions lead to collisions between the moving com-
ponents of the system. This occurs when the vibration amplitudes of some components of systems (clearances or gaps) excee
critical values. The broad interest in analysing and understanding the performance of such systems is reflected by a still in-
creasing amount of investigations devoted to this area. A few examples of such research are reported in references. Examples o
this type include gears (e.g. Kaharaman and Singh, 1990; Lin and Bapat, 1993; Natsiavas, 1993), vibration isolation elements
(e.g. Natsiavas, 1993), piping systems (e.g. Natsiavas, 1993), bearings (e.g. Lin and Bapat, 1993; Natsiavas, 1993), buildings
during earthquakes (e.g. Nguyen et al., 1987; Nigm and Shabana, 1983), impact dampers (e.g. Bajkowski, 1996; Peterka anc
Blazejczyk-Okolewska, 2004), impact hammers (e.g. Fu and Paul, 1969; Tung and Show, 1988) and heat exchangers (e.g.
Blazejczyk-Okolewska and Czolczynski, 1998; Goyda and The, 1980; Lin and Bapat, 1993). For a review of engineering ap-
proaches to impact systems, see also the monograph by Brogliato (1999). While analysing the studies devoted to mechanical
systems with impacts, one can state that researchers have focused on systems that differ in various aspects, namely: (a) numb
of degrees of freedom — systems with one degree of freedom (e.g. Hinrichs et al., 1997), two degrees of freedom (e.g. Peterka
and Blazejczyk-Okolewska, 2004), three degrees of freedom (e.g. Cempel, 1970), etc., (b) number of limiting stops (fenders) —
with one-sided limiting stops (e.g. Hinrichs et al., 1997) or two-sided limiting stops (e.g. Peterka and Blazejczyk-Okolewska,
2004), (c) way the limiting stops displace (e.g. Peterka and Blazejczyk-Okolewska, 2004) or do not displace (e.g. Hinrichs et
al., 1997) designs of the supporting structure — systems in which the supporting structures of subsystems depend on one anothe
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(e.g. Cempel, 1970) and systems with the subsystems that have independent supporting structures (e.g. Cempel, 1970), (e) typ
of forces that occur in the system — elasticity forces (e.g. Bajkowski, 1996; Bapat, 1998) and energy dissipation forces as, for
instance, viscous damping forces (e.g. Peterka and Blazejczyk-Okolewska, 2004) or friction forces (e.g. Hinrichs et al., 1997),
(f) number of excitations applied — to one body (e.g. Bajkowski, 1996; Hinrichs et al., 1997; Kaharaman and Singh, 1990; Lin
and Bapat, 1993; Natsiavas, 1993; Nguyen et al., 1987; Nigm and Shabana, 1983; Nordmark, 1991) or to two or more bodies
(e.g. Luo and Xie, 2002), (g) kind of excitation — kinematic (e.g. Lin and Bapat, 1993) or dynamic (e.g. Cempel, 1970; Pe-
terka and Blazejczyk-Okolewska, 2004), (h) characteristics of the forces analysed in the system — elasticity forces: linear (e.g.
Peterka and Blazejczyk-Okolewska, 2004) and nonlinear (e.g. Shaw and Holmes, 1983), damping forces: linear (e.g. Peterka
and Blazejczyk-Okolewska, 2004) and nonlinear (e.g. Mashri, 1966), friction forces: linear (e.g. Blazejczyk-Okolewska and
Kapitaniak, 1996) and nonlinear (e.g. Blazejczyk-Okolewska and Kapitaniak, 1996), (i) kind of limiting stops — rigid limiting
stops (e.g. Blazejczyk-Okolewska and Kapitaniak, 1996; Nordmark, 1991) or soft limiting stops (e.g. Kaharaman and Singh,
1990; Lin and Bapat, 1993; Natsiavas, 1993; Shaw and Holmes, 1983).

In the study by Blazejczyk-Okolewska et al. (2004), a way in which subsequent types of mechanical systems with impacts
arise has been presented and their classification has been shown. The study has answered the question: how many types
systems with impacts exist in general and what these types are, and has led to numerous conclusions. For instance, it has bee
stated that the scientific publications that include the analysis of mechanical systems with impacts and that were issued before
the publication of the study by Blazejczyk-Okolewska et al. (2004) are the works that include the analysis of systems that
are particular cases of the so-called basic systems (the majority of them are basic spring-impact-damping-excitation systems)
proposed by the authors of the above-mentioned study.

The object of considerations in the present study are systems with one and two degrees of freedom that, according to the
classification of mechanical systems with impacts (Blazejczyk-Okolewska et al., 2004), can be presented (in the case forces
of elasticity and impact forces are present in the system) as basic spring-impact systems. The basic spring-impact system is ¢
system in which each subsystem is connected to any other subsystem by means of a spring (each subsystem is also connecte
to a frame by means of a spring) and it impacts on any other subsystem (every subsystem impacts on the frame as well) at
both possible senses of the relative velocity. Fig. 1(a) shows a basic spring-impact system for the system with one degree of
freedom — it includes thus the spriig that connects a body of the masg to the frame and two outer fendergy andziqg
(the symbolj» denotes that the upper fendgg occurs, whereas the symhptefers to the occurrence of the lower fendey),
which make impacts of a body of the masg on the frame possible. Fig. 1(b) depicts a basic spring-impact system for the
two-degree-of-freedom system — it contains thus three spkinds, k12 (the springkq is the spring that connects a body of the
massn; to the frame, the springp is the spring that connects a body of the massto the frame, whereas the sprikgp is
the spring that couples a body of the masggwith a body of the mass) and six fenderszyg, z14d, z2g, 22d, 2129, 2124 (four
outer fenderszyg andzi4 — that enable impacts of a body of the masgson the framezg andz,q — that enable impacts of a
body of the mass:; on the frame, and two inner fendetgyg andzi24 — that enable impacts between subsystems, that is to
say, impacts of a body of the magg on a body of the mass»).

The discussed classification of types of mechanical systems with impacts (Blazejczyk-Okolewska et al., 2004) has a funda-
mental meaning in their designing process. Dimensions and the degree of complexity of some classified systems cause that the
design of these new types is incurred by high risk. Even an experienced designer with extensive intuition cannot predict fully if
a prototype of the system with impacts in building of which great costs and often efforts of numerous people have been involved
will fulfill the foreseen assumptions, if the forecast impacts will occur in it. Maybe a fender that is the so-called passive fender

Fig. 1. Basic spring-impact systems, according to the principles of classification (Blazejczyk-Okolewska et al., 2004): (a) system with one
degree of freedom, (b) system with two degrees of freedom.



B. Blazejczyk-Okolewska et al. / European Journal of Mechanics A/Solids 24 (2005) 277-291 279

4 Zlg Zzn A
© on
<
20 y
~ A
leU 20
m ~ m
v ! 2
? - * ~=
z a
12d | ~<
- v
~ y
IS
Z14 Zog ~
4 Yy |
T

Fig. 2. Scheme of the system with corresponding notations.

which does not impact on anything (sadphase |11 of Phase Il in Blazejczyk-Okolewska et al., 2004) has been assembled in
the system? This aspect is especially important during calculations and design of systems with impacts.

The primary conditions that such subsystems of any system have to satisfy are the geometrical conditions that allow for
the system assembly and the geometrical conditions that permit for outer and inner impacts in the system. Both the types of
conditions will be determined in the study below.

2. Basic notations

Fig. 2 shows a system that consists of two subsystems, which after fulfilling certain geometrical conditions can become a
system with two degrees of freedom (as in Fig. 1(b)). One subsystem is a body of the:nakthe following dimensions:
I1g — length of the upper outer fendefg, /14 — length of the lower outer fendefg, /129 — length of the upper inner fender
7129, l12d— length of the lower inner fendef 24. The second subsystem is a body of the magsf the following dimensions:
—length of the link (inner gap), in which inner impacts between masgesndsm, occur,/og — length of the upper outer fender
729, 24 — length of the lower outer fendepy. The quantity: refers to the length of a gap in the frame (a distance between
surfaces arbitrarily assumed as the upper and lower one in the frame). Let us notice that before assembly, the subsystem of the
massnj can represent a system with one degree of freedom (as in Fig. 1(a)).

3. Geometrical conditions of assembly
The geometrical conditions that allow for assembling the system are as follows:

1) gap lengthi in the frame longer than the sum of lengths of the fendgyandi14 (Fig. 3(a)),

h>lig+114. (2)
2) gap length: in the frame longer than the sum of lengths of the fendigyandi,q and the inner gap(Fig. 3(b)),

h>lpg+Iag+1, 2)
3) inner gap lengtth longer than the sum of lengths of the fenditg, and/1 24 (Fig. 3(c)),

1> l12g+ 1124, 3

4) gap length in the frame longer than the sum of lengths of the fendiggdoq and/1 24 (Fig. 3(d), the first case when there
is not enough room for the system after its assembly),

h>lg+l2d+l2d, (4)

5) gap length: in the frame longer than the sum of lengths of the fendgyd>4 and/124 (Fig. 3(e), the second case when
there is not enough room for the system after its assembly),

h>1l1g+1l2g+ 129 (5)
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Fig. 3. Schemes showing a lack of a possibility of assembling the system — (a) inequality (1), (b) inequality (2), (c) inequality (3), (d) inequal-
ity (4), (e) inequality (5) is not satisfied, correspondingly.
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Fig. 4. Sample schemes of systems without the inner fenggr

Each of the above-mentioned conditions has been depicted in Fig. 3. The first two conditions (Figs. 3(a) and 3(b), corre-
spondingly) present a lack of a possibility to assemble each subsystem individually in theo§épe frame. Thus, both the
instances represent the cases that should not take place, as they do not fulfil inequalities (1) and (2). If the sum of lengths of
the inner fenders o and!ly2q is bigger than the inner gap lengththen the system will never be assembled, either, and such a
situation is depicted in Fig. 3(c). In order to connect two subsystems, inequality (3) has to be satisfied.

Let us assume that the first three conditions are met, that is to say, inequalities (1), (2) and (3) are fulfilled. However, it turns
out that after assembling two subsystems in one system, it does not fit into tieofdipe frame. Such two situations where
the system does not fit into the frame gap after its assembly are shown in Figs. 3(d) and 3(e). In order to avoid such a situation
after assembly, the dimensions of the system have to fulfil inequalities (4) and (5).

All the above-described conditions hold in the situation when the system under consideration has all fenders, so that its
dimensions can be shown in the way presented in Fig. 2. If, however, the system analysed does not have one of the fenders, thel
the principle of omitting the condition holds, according to which the condition that includes the dimension connected with this
fender does not hold automatically.

This principle refers to the length of fenders only, and not to the length of gaps. For instance, let us assume that there is
no inner fendet,q in the system, and thus there is no dimensigg, then the geometrical conditions of assembly reduce
to the three conditions that can be described by inequalities (1), (2) and (4). An inquiring reader may ask a question: So what
that there is no fendes;og (dimension/;2g), if — with a relative motion of two subsystems — an impact in the position of the
lacking fender occurs, then what are these conditions for? The answer is as follows: the designer should design this connection
in such a way that an impact will not occur in this position. For example, in the position of the lacking fender, two subsystems
could omit simply each other and never impact on each other at all. An equally good answer follows from Fig. 4(a), where the
dimensioniq of the upper fender is equal to the supg + /, and there is no gap in the system. Then, we have the following
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dimensions: for a body of the masg —I1g, /14, [12¢, for a body of the massi, — Ipq, log + . On the other hand, another
reader can say: OK, but on the assumption that there is no, for instance, fgegddimension/;g) in the system, conditions
(1) and (4) are omitted. However, should not condition (1) be satisfied, if we assunig,thad? The answer is as follows: No,
it is unnecessary, because in this particular case, we have still condition (5), which hdids fgg. Moreover, an example of
the system shown in Fig. 4(b) proves that the dimensjgmioes not have to be included/in
The geometrical conditions of assembly have been presented in such a way that they hold for all, previously classified
systems with one and two degrees of freedom. In the case of a system with one degree of freedom (there is no subsystem of the
massmn>), according to the principle of omitting the condition, condition (1) holds only.

4. Geometrical conditions of impacts

In the systems under consideration (Fig. 1), impacts can occur when the defined conditions are met. Impacts have been
divided into two groups: outer impacts and the inner ones.

4.1. Geometrical conditions of outer impacts

By outer impacts are meant impacts on the frame, in which the feaglgrsyg, z14 andzaq (Fig. 1 or Fig. 2) take part.
The geometrical conditions that have to be satisfied by the system dimensions and that enable outer impacts are following:

1) in order for the fendety4 to impact on the frame, the fender lengdtly has to be longer than the sum of the lengths
Iog+ l12g of the fenderszg andzg2q (Fig. 5(a)), respectively,

llg > lzg + 1129, (6)

2) in order for the fenderzg to impact on the frame, the sum of the fender leriggfand the inner gaphas to be bigger than
the sum of the lengthlg g andl; 24 of the fenders g andzi24 (Fig. 5(b)), respectively,

log+1>1l1g+1124, ©)

3) in order for the fender 4 to impact on the frame, the fender lengih has to be longer than the sum of the lendthysand
l124 of the fenders g andzyo4 (Fig. 5(c)), respectively,

l1d > l2d + 124, (8)

4) in order for the fendeg,q to impact on the frame, the sum of the fender lengthand the inner gap lengthhas to be
bigger than the sum of the lengthgy and/; ¢ of the fenders 14 andzi2g (Fig. 5(d)), respectively,

log+1>11d+1l12g 9)
Figs. 5(a)—(c) and 5(d) show situations when outer impacts of the fenggrsg, z14 andzaq, respectively, will not take

place in the system. For example, Fig. 5(a) depicts a case when the tggaet never be able to impact on the frame. The
obstacle lies in too high a value of the sum of lengths of the fenggrandzy,g, and, strictly speaking, the blocking of the
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Fig. 5. Schemes of the systems in which outer impacts will never occur.
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upward motion of the subsystem of the masg by the inner fendet,4. In order to prevent such a situation, condition of
inequality (6) has to be met.

In the case of the geometrical conditions of outer impaherinciple of omitting the condition holds, like for the assembly
conditions. If the system under consideration does not have one of outer fenders, then the condition that contains the dimension
connected with this fender is omitted automatically. For instance, let us assume that the system does not have the outer fendel
z1g, and thus it does not have the dimensigg then the geometrical conditions of outer impacts of such a system assume
the form of two inequalities only, namely inequality (8) and (9). An inquiring reader will say instantly: How is it? There is no
fenderz g, and the condition for outer impacts with the fendgy (that is to say, inequality (7)) is omitted? Yes, it is so because
inequality (7) is then satisfied automatically. When there is no fenggthen an outer impact with the fendery will always
occur, if such a fender exists of course.

The geometrical conditions of outer impacts have been presented in such a way that they hold for all, previously classified
types of systems with one and two degrees of freedom. In the case of a one-degree-of-freedom system (no subsystem of the
massn2), outer impacts always occur (as long as the fendgyaindzi4 exist), despite the fact that, accordinghe principle
of omitting the condition, conditions (6)—(8) and (9) are omitted.

After the analysis conducted in such a way, a question arises if it is possible to determine such conditions that define explicitly
if outer impacts occur in a given system and what impacts take place. Will — in a real, assembled system — all outer impacts
occur or only three or two selected ones or maybe just one impact? This question can be answered comprehensively thanks
to thegraphic method of ranges of outer impacts, which has been developed by the authors and which consists in plotting a
diagram with ranges of outer impacts in the system.

4.2. Graphic method of ranges of outer impacts

Fig. 6 shows a diagram of ranges of outer impacts. This is a diagram that has been referred only to two dimensions of the
subsystem of the mass;, namely the dimensioR g and the dimensioh g, i.e., the dimensions that are connected with outer
fenders {14 andz14) of this subsystem.

Let us notice that both the dimensions, ify andlyg, on the diagram are directly connected with the first geometrical
condition of assembly, which informs us about the fact that the sum of the link lehgthsl1g has to be smaller than the
length of the gap of the frame. Owing to this facthe basic straight line (thickened line), described by the equatiag =
h1 —l1g (hy =l1g+114), has been drawn on the diagram, and any point taken from the region confined by it or belonging to it
always fulfils the inequalityyg + /14 < A1.

The points of the basic straight lidgy = 71 — /14 that intersect the axégg and/14 are the points: on the axigg — value
l1g=h1 (l1g=0), on the axid1q — valuel,q = 1 (for /13 = 0). Both the values (the ultimate ones) are equal, which makes
this straight line directed at the angle of4ith respect to both the axes of the diagram.

Apart from this, the diagram presents all conditions for outer impacts. The first two of them (6) and (7) are located on the
horizontal axidy 4. As the valugg + 1124 from condition (6) is lower than the valugg + [ — I124 from condition (7) (because
I —l12d > l12g= | > l12g+ [124, the third condition of assembly (3)), we place it as the closer one to “0” on thégxiand
next, the second one of them. Thus, the range/y < h1 — 14 of the diagram we are interested in has been divided into three
subregions, namely: @ l1g < lpg+112g, log+l12g < l1g < log+1 — l12d, log+1 — 1124 < l1g < h1 — l14- We act analogously
with the two remaining conditions of outer impacts (8) and (9). The first value of thigrr,/124is lower than the second value
log+1—I12g(becauseéiog < I —l12g=> | > l124+!12g, the third condition of assembly (3)), we place it as the closer one to “0”
on the axidyq, and next, the second one of them. Thus, the rangé1@ < 71 — I1g we are interested in on the plot has been
divided into three subregions, namely=Q1q < loq + /124, l2g + l12d < 1d < lod + ! — l12g, lod + 1 — l12g < l1d < h1 — l14-

The diagram prepared in this way is composed of nine rectangular regions (region A: 1-2-7-8, region B: 2-3-6-7, region C:
3-4-5-6, region D: 8-7-10-9, region E: 7-6-11-10, region F: 6-5-12-11, region G: 9-10-15-16, region H: 10-11-14-15, region I:
11-12-13-14) that describe various possibilities of outer impacts. Each upper left corner of the region, filled with the notation
719 (regions: B, C, E, F, H, 1), informs us about a possibility of occurrence of an outer impact of the upper subsystem of the
massn on the frame. Each lower left corner of the region, filled with the notatign(A, B, C, D, E, F), informs us about a
possibility of occurrence of an outer impact of the lower subsystem of thesmaes the frame. Each upper right corner of the
region, filled with the notationyq (regions: A, B, D, E, G, H), informs us about a possibility of occurrence of an outer impact
of the upper subsystem of the mass on the frame. Each lower right corner of the region, filled with the notatjgr{regions:

D, E, F, G, H, ), informs us about a possibility of occurrence of an outer impact of the lower subsystem of theoroashe
frame.

It follows from this diagram that in order to, for instance, have all cases of outer impagls4y, z1d, z24), We have to be
in the region E, where the following conditions on the lengths of the ferlggiand/1q: log + l12g < l1g < l2g + ! — l12gand
log+l12d < l1d < log + 1 — I12g are fulfilled. Having established their values, we have to remember that the pararhateto
be higher tham; = /14 + /14, according to the previous assumptions. It can be the valuehe=ghg (then the pointg of the
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Fig. 6. Diagram of the ranges of outer impacts, applied in the graphic method.

region E lies below the straight line described by the equdiign= hg — l1ge)- It is also possible to have all outer impacts,
i.e., to be in the region E without increasing the paramiet&ve assume then that= 41 = const and, for instancé,q = const,
and the value of the parametegy has to satisfy the inequalityg < 71 — l19 (I1g and/;q must be values from the region E).

The structure of the diagram becomes simple when one of the fenders is lacking. For instance, when there is ng.fender
that is to say, the dimensidfgy, only the axid1q of the diagram holds, with the ranges of conditions for outer impacts that hold
on it (see Example 2 in Section 5, where examples of application of the diagram of ranges of outer impacts are given and their
advantages are described).

4.3. Geometrical conditions of inner impacts

By inner impacts we mean impacts between the subsystem of thenmamsd the subsystem of the mass, that is say,

such impacts in which the fendergpg andzi24 (Figs. 1 or 2) take part.

The geometrical conditions that the system dimensions have to fulfil and that enable inner impacts are as follows:

1) in order for the subsystem of the masg to impact on the subsystem of the magswith the fenderz1 24, the following

inequality has to be satisfied (Fig. 7(a)),

(l1ig—l12g) + (I +log) <h,

(10)
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Fig. 7. Schemes of the systems in which inner impacts will never occur.

2) in order for the subsystem of the mass$ to impact on the subsystem of the masswith the fenderz1 24, the following
inequality has to be satisfied (Fig. 7(b)),

(I1d — l12d) + (U + I2g) <h. (11)

Fig. 7 shows a situation when inner impacts performed by the fengggsndz14 will never occur in the system.

Fig. 7(a) presents a case when the fendeg will never be active during the relative motion of the subsystem of the mass
m4 upwards and the subsystem of the massdownwards. An obstacle lies in too high a value of the sum that consists of
the addends denoted in the figurelgy — I12g and! + I14. This sum is bigger than the length of the gapf the frame. The
activity of this fender is thus limited due to a lack of a possibility of further displacement of the subsystems with respect to
each other. Fig. 7(b) is a case when the fendeg will never be active during the relative motion of the subsystem of the mass
m4 downwards and the subsystem of the magauipwards. An obstacle lies in too high a value of the sum that consists of the
addends denoted in the figure hy — l124 and! + I>g. This sum is bigger than the length of the gapf the frame. The activity
of this fender is thus also limited due to a lack of a possibility of further displacement of the subsystems with respect to each
other.

If the system under consideration does not have one inner fendethehpirinciple of omitting the condition, according to
which the condition, which includes the dimension related to this fender does not hold automatically, acts as well.

The geometrical conditions of inner impacts have been presented in such a way that they hold for all, previously classified
systems with two degrees of freedom. In the case of a system with one degree of freedom (there is no subsystem efthe mass
we do not consider inner impacts.

In the case of outer impacts, it was possible to prepare a general diagram of ranges of impacts. However, in the case of
inner impacts, the situation becomes slightly more complex. It is difficult to place the values of conditions for inner impacts,
thatis to sayiyg < h — (I +1l2q — l12g) andiyg < h — (I +I2g — l12¢), on the diagram from Fig. 6. For a particular case, as in
Examples 1 and 2 of Subsections 5.1 and 5.2, respectively, the situation becomes much simpler. There, the examples of system
with the diagrams of ranges of outer and inner impacts have been given. It can be thus concluded that the diagram of impacts
from Subsection 4.2 plays a very useful role. Having a particular system with given dimensions, we can define what impacts
will occur in the system and which fenders should have their lengths changed to have another set of outer and inner impacts.

In all conditions for outer and inner impacts, sharp inequalities occur. In the case we write these conditions in the form of
non-sharp inequalities, a situation arises in which outer impacts can occur simultaneously or outer and inner impacts can occur
simultaneously.

5. Examples of applications of the diagram with ranges of impacts — discussion of the results

The examples presented in this section are aimed not only to examine the introduced geometrical conditions of assembly
and impacts, but also to indicate a possibility of employment of the above-discussed method, that is to say, the graphic method
of ranges of impacts, in practical applications.
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5.1. Example 1

For the system presented in Fig. 2, check a possibility of assembly and occurrence of outer and inner impacts, on the
assumption of the following dimensionless lengthg:= 10,/1q= 3, /12g=3,l12d= L. log=4,1 =5,1pg=4,h = 17.

Solution:

I. Checking assembly conditions (1)—(5):

(D) 13=l1g+lig<h=17,
(2 13=lpg+I+lg<h=17,
(@ 4=l1ag+l12d<l=5,

@) 15=l1g+lpq+l12q<h =17,
(5)  10=1l14+lpg+l12g<h=1T.

All the assembly conditions are met. Otherwise, the designer would have to alter the lengths of the fenders or the lengths of
the gaps.
II. Conditions for outer impacts (6)—(8):

(6) 7=lpg+I12g<l1g=10,
(7 8= 12g+l —l12d # llg =10,
® 5S=ld+h2dtlhd=3

(9 6=1lpg+1—l1g>l1g=3.

In the case of outer impacts, not all conditions are satisfied. In the system where the dimensions are assigned in this way,
never all outer fenders will be active. Despite the fact that the designer assembled all outer fenders, two of themzpamely:
andzy4, would always be passive (conditions (7) and (8) are not fulfilled).

[ll. Conditions for inner impacts (10) and (11):

(10 16=(lig— l1ag) + (I +log) < h =17,
1D 11=(1q—l12d + ( +log) <h=17.

As regards inner impacts, all conditions are met. In the system with the dimensions assigned in this way, both the fenders
z12g @ndzi2q will be active.

In order to place the geometrical conditions for inner impacts on the diagram of ranges of impacts, they have been written
in the way that determines the range of variables on the Ayeand/yq, i.e.:l1g < h — (I + loq — l12¢) = 11 andlyg <
h—(+Ilg—1129) =9.

Fig. 8 shows a diagram with ranges of outer and inner impacts. The assigned data cause, as has already been mentionec
that the system after assembly can perform only two outer impacts (dyg+010 and/1g = 3, we are in region I). They are
impacts of the subsystem of the masg with the upper fender; g and impacts of the subsystem of the masgs but with the
lower fenderzaq. It also results from the diagram that the system can perform both inner impacts (the ranges of inner impacts
are marked with a dashed line on the diagram).

On the diagram, the straight line that fulfils the equalign= 1 — l1g, wherehy = l1g+ 14 = 13, is drawn. Let us notice
that the value of the parametey plays the role of the boundary parameter if we want to enforce other sets of outer impacts in
the system.

Changing the lengths of the fendéig and!/1q in such a way that the chosen valuégy§ and/;gn) belong to the region
below the straight linéyq = 1 — l1g, and not altering the remaining assigned valligg 2g, /124, l2g, [ andizq at all, we can
have various sets of outer and inner impacts through a selection of the region A, D, G, E, H or I. It is possible owing to the fact
that the sum of the lengthiggn + /14n Will never exceedi; and always:y < k. The additional information is the fact that while
changing the valuelgg andi 4, the ranges of inner impacts are displaced. It follows from this that in the regions D, G, E and H,
inner impacts will always take place and outer impacts defined by the conditions will occur as well (for the region D — with the
fendersepq, z14 andzog, for the region G — with the fendetsq andzog, for the region E —with the fendetgg, z24, z14 andzag,
for the region H — with the fendetg g, z2g andzyg). In the case of the regions A and I, while changing the values of the lengths
of the fenderd; g andly 4 into (now we consider consequently the values from the region below the straightyiagr; —I14)
the valuedgn and/1gn, a situation becomes slightly more complex. In the region A, outer impacts with the fendeand
z2g can occur and both inner impacts can take place il [ — l10g < l1dn < h — (I +log — l12¢) and O< l1gn < lpg+112g
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Fig. 8. Diagram of the ranges of inner impacts for Example 1 with the ranges of inner impacts.

(the area below the straight liigg = /1 — I14 of the region A under the dashed region), or only inner impacts with the upper
fenderziog can occur whetk — (Iog +l12¢) > l1dn > h — (I + lpg — l12d) and O< lygn < hy — h + (I +log — l12¢) (dashed
area of the region A, in which the lower fendgpq is passive). In the region I, outer impacts with the fendegsandz,q can
occur, or both inner impacts can take place whgnt [ —l124 < lign < h — (I +l2q — l12g) and 0< l3gn < log+ 124 (the area
below the straight liné, g = /11 — 14 Of the region | on the left-hand side of the dashed region), or only inner impacts with the
lower fenderzy 24 can oceur ifh — (I +lpq — l12g < lign < b — (l2d + l12¢) @nd O< lygn < hy — h + (I +Ipg — l12g) (dashed
area of the region |, in which the upper fendepg is passive).

For lygn > h — (I2g + l12g) Of the region A lying below the straight lingq = 73 — /1 (the boundary value of one of
the conditions), assembly condition (5) is not met. Figj > 1 — (Iog + [129) of the region | lying below the straight line
l1g = h1 — l1g (the boundary value of one of the conditions), assembly condition (4) is not fulfilled. There is, however, a
possibility of exceeding these values, for instance, through an increase in the value of the patatoet@ternations of
another parameter). While introducing changes in the values of the system parameters, we should however remember that the
assembly conditions should always be satisfied and that if we change any values, then the ranges of conditions of inner impacts
change as well.
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Some very significant conclusions follow from the analysis conducted. First of all, it is possible to design a system in such
a way that both inner fenders;og andz12¢) will occur in it but only one will be active. Then a question arises: What is a
passive fender assembled for? Of course, it is unnecessary. The designer should not assemble passive fenders and it shou
be remembered that if the system under consideration does not have one of the inner fenders, then the condition that includes
the dimension related to this fender does not hold automatically, that is tthegy,inciple of omitting the condition holds.

Secondly, it is impossible to design a system in such a way that both inner fegg®@ndziog will occur in it and both of

them will be passive (the intersection point of the dashed lines that describe the ranges of inner impacts always lies above the
straight linel1q = h — I1g). In the case of undesirable inner impacts, the system should be designed so that it does not have
inner fenders. Then, in the system under consideration, the conditions that include dimensions related to tt‘@i@ramis

2124 do not hold automatically.

Also, let us notice (and this is an important advantage) that in all the described regions below the straighting— /14
(D, G, E, H, Aonly forlyg < h — (Iog + l12g) or 1 only for l1g < h — (Iog + l120), it is possible to minimise the value af
However, it should be remembered that 41 and that all the conditions of assembly should be met (in this case, for instance,

h = 15.5) and that if this value is changed, then the ranges of conditions of inner impacts change as well.

The diagram of ranges of impacts has also such an advantage that it can be applied knowingly when it is necessary to use the
valueslygn and/;qn from the region between the straight lingg = 1 — I1g, /14 = h — [1 Or from the regions (even) above
the straight lindyq = i — I14. In the first case, if we select the valued gfy, and/1 4, from the regions A, B, C, E, F and |, and
remain absolutely the value= 17 constant, we should remember that the assembly conditions have to be met. In the second
case (regions A, B, C, F and I), the inequalityn +/1qdn > / holds, and thus the valueshould be changed into another value,
e.g.hh, such thahh > 1 and that the assembly conditions should always be satisfied. We should always remember that if we
alter the valué:, the ranges of the conditions of inner impacts change and the intersection point of the dashed lines (ranges of
inner impacts) will be above the straight ling = hh — /1.

Let us assume that in the above-considered system, the outer inpgate additionally desirable, so we want to bring the
system to the situation from the region H, i.e., to impacts with the fenggrandz,4. To achieve this, we change the fender
length/; g into a value from this region. Let it be, for instanéggH = 7.5. The remaining parameters are left unchanged. Let
us notice that we do not have to change the length of the fendelz1qq = z19 = 3) either, as this value is included in this
region. In this case, we do not have to check the assembly conditions as the whole region H is situated below the straight line
l1g=hy —l1g, andhy < h (hereh can be decreased tq, if necessary). To make sure, we can check the correctness of the
assumptions concerning an occurrence of three outer impacts from this region:

6) T=lag+Il12g<l1gH="75,
(1) 8=lag+1—l12g> l1gn=T7.5,
® 5=lx+h2d%l1dH=3,

(9 6=lxg+!—Il129>l1gn=3.

The calculated conditions point out to the correctness of the assumptions concerning an occurrence of three outer impacts.
The following outer fendersyg, z2g andzog will be active in the system and both inner impacts will occur (we do not need to
check the conditions for inner impacts either/ag < l1g)-

Next, let us assume that in the system under consideration all outer impacts are desirable, and thus we want to bring the
system to the situation from the region E, i&.g, z2gz14 andzzg. In this case, we change the fender lendtiysand/y 4 into
the values, e.gjge = 7.5 andljge = 5.5. Let us notice that in this case, we do not have to check the conditions of assembly.
Althoughl1ge +Il1de = h1, buthy < h (hereh cannot be decreased/g) and the whole region E is situated below the straight
line I1q4 = h — l1g. To make sure, we can check the correctness of the assumptions concerning an occurrence of all three outer
impacts from this region:

(6) T=lpg+l12g<l1ge="7.5,
(1) 8=lpg+1—l1d4>l1ge=T7.5,
(8 5=lq+l12d<l1dE=55,

(9) 6=lpq+!—l12g> l1dE=5.5.

The fulfilment of the above-mentioned conditions points out to the correctness of the assumptions made. In the system, all
outer fenders will be active and both inner impacts will take place.



288 B. Blazejczyk-Okolewska et al. / European Journal of Mechanics A/Solids 24 (2005) 277-291

5.2. Example 2

For the system shown in Fig. 4(b), check a possibility of assembly and occurrence of outer and inner impacts, on the
assumption of the following dimensionless lengthg:= 10, l12q=3,log+1=2,lpq=4,h =8.

Solution:

I. Checking the conditions of assembly:

(2) 6=lg+Il+lg<h=8

Assembly conditions (1), (3), (4) and (5) do not hold owing to a special structure of the system, whereas condition (2) is
satisfied.
II. Conditions for outer impacts:

B) T=lpq+I129<I1g=10.

In the case of outer impacts, conditions (6), (7) and (9) are omitted. Condition (8) is fulfilled. In the system with the lengths
of the fenders assigned in this way, outer impacts with the lower fendewill take place. Despite the fact that conditions
(7) and (9) for outer impactsq andzpq are omitted, these impacts will always occur in it, owing to a special structure of the
system (a lack of the fenders that could prevent it, see Figs. 5(b) and 5(d)).

[ll. Conditions for inner impacts:

(1) 9=(1d—l129 + U +12g) £ h=8.

In the case of inner impacts, condition (10) is omitted, whereas condition (11) is not met. In the system with the lengths
of the links assigned in this way, inner impacts with the fendeg will not occur. Although there is no parametgy in the
system, but in Fig. 9 it has been treated as the dimension equal to zero and the straightting — /14 has been drawn. We
should remember, however, that in this case only the vertical axis holds (for the example given, the range D of this axis).

Let us notice that here the value of the paramaietdoes not play the part of the boundary parameter if we want to enforce
other sets of impacts in the system. Owing to a special structure of the systetoes not have to be smaller thapas the
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Fig. 9. Diagram of the ranges of outer impacts for Example 2.
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fender length4 is not included in the gap. If we change the fender lengtfy into the lengthi1 4, such that1gn > /14, we do

not cause any changes in the behaviour of the system. We observe the same set of impacts, that is to say, outer impacts with th
lower fenderz14 and outer impacts of the second subsystem with the fenggi@ndz,4. We observe the same situation if we

change the length g into the length1 4, from the rangéiq > l1dn> 1 — (I + l2g — l124). However, if we decrease the length

l14 to the lengthl1 g, from the rang€aq + l12d < l1gn < b — (I + l2g — l124), then apart from outer impacts with the fenders

714 22d @ndzzg, also inner impacts can be observed with the fendgg, which stops being passive (the system designed by

the designer is fully used now — all fenders are active; we are still in the range D). Let us notice also that when weldgcrease

to the lengthl1 4 from the range G< I14n < Iog + I124, then the fendet,y stops being active (range G). In the system, both

outer impacts take place with the second subsystem and inner impacts occur with the feqader

5.3. Discussion of the examples

Both in Example 1 and 2 (Subsections 5.1 and 5.2, respectively), the possibilities of introducing changes in sets of impacts
due to changes in the link lengthg and/1 g have been presented.

Now, let us notice that in Example 2 (Subsection 5.2), if we want to make the inner fender active, it might be easier to change
its length. It is enough to increase its lendthq to the valugoqn= 5. After this change, condition for an outer impact (8) is
still satisfied:

8 9=lzq+l12dn<l1d=10
If the condition for an inner impact:
(1) 7=(1d—l12dn + U +1log) <h =8
holds, then the fenden o4, becomes active. At such a slight correction of the length of one of the links in the system, the outer

impactszig, z2g, z2d Still occur and the inner impact oqn takes place as well (Fig. 10).
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Fig. 10. Diagram of the ranges of outer impacts.
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It is also worth to draw the reader’s attention to the fact that in the case of a greater change in tha jgnfgthinstance,
z12dn= 7, we make the fender g passive in the system, because=1bq + l12dn £ 14 = 10. The inner fender is, however,
still active, because condition=5 (I1q — /12dn) + (! +I2g) < h = 8 is fulfilled. Changing the value of the length of the inner
fenderl1q to a bigger one, it will remain active and the fendeg will be active, if /124n satisfies the following inequality:
lig—h+ (I +12g) < l12dn < l1d—I24. In Example 2 (Subsection 5.2), the changes of the parameters connected to the subsystem
of the massn4 have been applied, thus it was not necessary to check the conditions of assembly in any of these considerations
because this subsystem, due to its structure, did not have to be included in thefgap frame.

In general, one can conclude that the following principle holds: if the lengths of the outer féqpgargli; 4 aim at zero,
then the inner fenders g andz124 tend to be active or, as in Example 2, if the lengths of the inner ferigggand/io4 aim
at infinity, then the outer fendetgg andz;4 tend to be passive.

6. Conclusions

The object of the investigations presented are mechanical systems with impacts with one and two degrees of freedom that
have been classified previously by the authors of the present study. The models of the systems under consideration are rigid
bodies that can perform a motion along a straight line without a possibility of rotations.

The geometrical conditions of assembly and the geometrical conditions of outer and inner impacts that can occur during
operation have been determinddhe principle of omitting the condition, according to which the condition that includes the
dimension related to this fender is omitted automatically in the system, has been developed. This principle holds both for the
conditions of assembly and for the conditions for outer and inner impacts.

In the case the conditions for impacts are written by means of non-sharp inequalities, a situation arises in which simultaneous
outer impacts or simultaneous outer and inner impacts are possible in the system.

In the study, the so-callegtaphic method of ranges of impacts that allow us to answer numerous questions, for instance, if
and what kind of impacts can occur in the system, has been proposed. This method also leads to some conclusions, among whicl
the most important are as follows: (1) it is possible to design a system with a predetermined set of outer and inner impacts, (2) it
is possible to identify a passive fender.

From the viewpoint of the classification of mechanical systems with impacts (Blazejczyk-Okolewska et al., 2004), the
system that has a passive fender (that has been identified with the graphic method of ranges of impacts) is the so-called inapt
combination and should be either eliminated through a change in the system parameters (lengths of the fenders) or we should
make it an apt combination.

On the basis of the examples included in this study, it has been stated that there is a possibility to design such a mechanical
system in which all outer and inner fenders will be active, and the obtained system will basitbémpact system, according
to the classification of mechanical systems with impacts (Blazejczyk-Okolewska et al., 2004). An analysis of the dynamics of
such a system will be interesting, according to the authors’ opinion.

The results of the present study, based on rigid bodies without any deformation in contact points, are exactly valid for the
beginning of impacts — for the first touch of impacting bodies. If the contacts between bodies are realized by means of weak
stops, simultaneous contacts in different impacting pairs could occur.

The present work provides much information of the fundamental nature that broadens the scope of knowledge on the motion
of mechanical systems with impacts. This information can be applied in future to calculations and design of the above-described
structures. The study can be the basis for starting investigations on mechanical systems with impacts, in which the motion is
multidimensional as well.
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