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Abstract

The object of investigations are systems with impacts with one and two degrees of freedom that have been classifi
authors previously. The models of the systems under consideration are rigid bodies that can perform a motion along
line without a possibility of rotations. The geometrical conditions of assembly and the geometrical conditions of inner a
impacts have been determined in this study. According to the authors’ viewpoint, the determination of these conditions
an application in calculations and design of the structures described.
 2004 Elsevier SAS. All rights reserved.
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omitting the condition; Graphic method of ranges of impacts

1. Introduction

In a large number of diverse engineering fields, design or working conditions lead to collisions between the movi
ponents of the system. This occurs when the vibration amplitudes of some components of systems (clearances or ga
critical values. The broad interest in analysing and understanding the performance of such systems is reflected by
creasing amount of investigations devoted to this area. A few examples of such research are reported in references. E
this type include gears (e.g. Kaharaman and Singh, 1990; Lin and Bapat, 1993; Natsiavas, 1993), vibration isolation
(e.g. Natsiavas, 1993), piping systems (e.g. Natsiavas, 1993), bearings (e.g. Lin and Bapat, 1993; Natsiavas, 1993)
during earthquakes (e.g. Nguyen et al., 1987; Nigm and Shabana, 1983), impact dampers (e.g. Bajkowski, 1996; Pe
Blazejczyk-Okolewska, 2004), impact hammers (e.g. Fu and Paul, 1969; Tung and Show, 1988) and heat exchan
Blazejczyk-Okolewska and Czolczynski, 1998; Goyda and The, 1980; Lin and Bapat, 1993). For a review of enginee
proaches to impact systems, see also the monograph by Brogliato (1999). While analysing the studies devoted to m
systems with impacts, one can state that researchers have focused on systems that differ in various aspects, namely:
of degrees of freedom – systems with one degree of freedom (e.g. Hinrichs et al., 1997), two degrees of freedom (e.
and Blazejczyk-Okolewska, 2004), three degrees of freedom (e.g. Cempel, 1970), etc., (b) number of limiting stops (fe
with one-sided limiting stops (e.g. Hinrichs et al., 1997) or two-sided limiting stops (e.g. Peterka and Blazejczyk-Oko
2004), (c) way the limiting stops displace (e.g. Peterka and Blazejczyk-Okolewska, 2004) or do not displace (e.g. Hi
al., 1997) designs of the supporting structure – systems in which the supporting structures of subsystems depend on o

E-mail address: okolbar@p.lodz.pl (B. Blazejczyk-Okolewska).
0997-7538/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.euromechsol.2004.09.006
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(e.g. Cempel, 1970) and systems with the subsystems that have independent supporting structures (e.g. Cempel, 197
of forces that occur in the system – elasticity forces (e.g. Bajkowski, 1996; Bapat, 1998) and energy dissipation force
instance, viscous damping forces (e.g. Peterka and Blazejczyk-Okolewska, 2004) or friction forces (e.g. Hinrichs et a
(f) number of excitations applied – to one body (e.g. Bajkowski, 1996; Hinrichs et al., 1997; Kaharaman and Singh, 1
and Bapat, 1993; Natsiavas, 1993; Nguyen et al., 1987; Nigm and Shabana, 1983; Nordmark, 1991) or to two or mo
(e.g. Luo and Xie, 2002), (g) kind of excitation – kinematic (e.g. Lin and Bapat, 1993) or dynamic (e.g. Cempel, 19
terka and Blazejczyk-Okolewska, 2004), (h) characteristics of the forces analysed in the system – elasticity forces: lin
Peterka and Blazejczyk-Okolewska, 2004) and nonlinear (e.g. Shaw and Holmes, 1983), damping forces: linear (e.g
and Blazejczyk-Okolewska, 2004) and nonlinear (e.g. Mashri, 1966), friction forces: linear (e.g. Blazejczyk-Okolew
Kapitaniak, 1996) and nonlinear (e.g. Blazejczyk-Okolewska and Kapitaniak, 1996), (i) kind of limiting stops – rigid li
stops (e.g. Blazejczyk-Okolewska and Kapitaniak, 1996; Nordmark, 1991) or soft limiting stops (e.g. Kaharaman an
1990; Lin and Bapat, 1993; Natsiavas, 1993; Shaw and Holmes, 1983).

In the study by Blazejczyk-Okolewska et al. (2004), a way in which subsequent types of mechanical systems with
arise has been presented and their classification has been shown. The study has answered the question: how ma
systems with impacts exist in general and what these types are, and has led to numerous conclusions. For instance,
stated that the scientific publications that include the analysis of mechanical systems with impacts and that were issu
the publication of the study by Blazejczyk-Okolewska et al. (2004) are the works that include the analysis of syste
are particular cases of the so-called basic systems (the majority of them are basic spring-impact-damping-excitation
proposed by the authors of the above-mentioned study.

The object of considerations in the present study are systems with one and two degrees of freedom that, accord
classification of mechanical systems with impacts (Blazejczyk-Okolewska et al., 2004), can be presented (in the ca
of elasticity and impact forces are present in the system) as basic spring-impact systems. The basic spring-impact s
system in which each subsystem is connected to any other subsystem by means of a spring (each subsystem is also
to a frame by means of a spring) and it impacts on any other subsystem (every subsystem impacts on the frame a
both possible senses of the relative velocity. Fig. 1(a) shows a basic spring-impact system for the system with one
freedom – it includes thus the springk1 that connects a body of the massm1 to the frame and two outer fendersz1g andz1d
(the symbolψ denotes that the upper fenderz1g occurs, whereas the symbolζ refers to the occurrence of the lower fenderz1d),
which make impacts of a body of the massm1 on the frame possible. Fig. 1(b) depicts a basic spring-impact system fo
two-degree-of-freedom system – it contains thus three springsk1, k2, k12 (the springk1 is the spring that connects a body of t
massm1 to the frame, the springk2 is the spring that connects a body of the massm2 to the frame, whereas the springk12 is
the spring that couples a body of the massm1 with a body of the massm2) and six fenders:z1g, z1d, z2g, z2d, z12g, z12d (four
outer fenders:z1g andz1d – that enable impacts of a body of the massm1 on the frame,z2g andz2d – that enable impacts of
body of the massm2 on the frame, and two inner fenders:z12g andz12d – that enable impacts between subsystems, that
say, impacts of a body of the massm1 on a body of the massm2).

The discussed classification of types of mechanical systems with impacts (Blazejczyk-Okolewska et al., 2004) has
mental meaning in their designing process. Dimensions and the degree of complexity of some classified systems cau
design of these new types is incurred by high risk. Even an experienced designer with extensive intuition cannot predi
a prototype of the system with impacts in building of which great costs and often efforts of numerous people have been
will fulfill the foreseen assumptions, if the forecast impacts will occur in it. Maybe a fender that is the so-called passive

(a) (b)

Fig. 1. Basic spring-impact systems, according to the principles of classification (Blazejczyk-Okolewska et al., 2004): (a) system
degree of freedom, (b) system with two degrees of freedom.
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Fig. 2. Scheme of the system with corresponding notations.

which does not impact on anything (seesubphase III of Phase II in Blazejczyk-Okolewska et al., 2004) has been assemble
the system? This aspect is especially important during calculations and design of systems with impacts.

The primary conditions that such subsystems of any system have to satisfy are the geometrical conditions that
the system assembly and the geometrical conditions that permit for outer and inner impacts in the system. Both the
conditions will be determined in the study below.

2. Basic notations

Fig. 2 shows a system that consists of two subsystems, which after fulfilling certain geometrical conditions can b
system with two degrees of freedom (as in Fig. 1(b)). One subsystem is a body of the massm1 of the following dimensions
l1g – length of the upper outer fenderz1g, l1d – length of the lower outer fenderz1d, l12g – length of the upper inner fende
z12g, l12d – length of the lower inner fenderz12d. The second subsystem is a body of the massm2 of the following dimensions:l
– length of the link (inner gap), in which inner impacts between massesm1 andm2 occur,l2g – length of the upper outer fende
z2g, l2d – length of the lower outer fenderz2d. The quantityh refers to the length of a gap in the frame (a distance betw
surfaces arbitrarily assumed as the upper and lower one in the frame). Let us notice that before assembly, the subsys
massm1 can represent a system with one degree of freedom (as in Fig. 1(a)).

3. Geometrical conditions of assembly

The geometrical conditions that allow for assembling the system are as follows:

1) gap lengthh in the frame longer than the sum of lengths of the fendersl1g andl1d (Fig. 3(a)),

h > l1g + l1d, (1)

2) gap lengthh in the frame longer than the sum of lengths of the fendersl2g andl2d and the inner gapl (Fig. 3(b)),

h > l2g + l2d + l, (2)

3) inner gap lengthl longer than the sum of lengths of the fendersl12g andl12d (Fig. 3(c)),

l > l12g+ l12d, (3)

4) gap lengthh in the frame longer than the sum of lengths of the fendersl1g, l2d andl12d (Fig. 3(d), the first case when the
is not enough room for the system after its assembly),

h > l1g + l2d + l12d, (4)

5) gap lengthh in the frame longer than the sum of lengths of the fendersl1d, l2g andl12g (Fig. 3(e), the second case wh
there is not enough room for the system after its assembly),

h > l1d + l2g + l12g. (5)
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Fig. 3. Schemes showing a lack of a possibility of assembling the system – (a) inequality (1), (b) inequality (2), (c) inequality (3), (d)
ity (4), (e) inequality (5) is not satisfied, correspondingly.

(a) (b)

Fig. 4. Sample schemes of systems without the inner fenderz12g.

Each of the above-mentioned conditions has been depicted in Fig. 3. The first two conditions (Figs. 3(a) and 3(b
spondingly) present a lack of a possibility to assemble each subsystem individually in the gaph of the frame. Thus, both th
instances represent the cases that should not take place, as they do not fulfil inequalities (1) and (2). If the sum of l
the inner fendersl12g andl12d is bigger than the inner gap lengthl, then the system will never be assembled, either, and su
situation is depicted in Fig. 3(c). In order to connect two subsystems, inequality (3) has to be satisfied.

Let us assume that the first three conditions are met, that is to say, inequalities (1), (2) and (3) are fulfilled. Howeve
out that after assembling two subsystems in one system, it does not fit into the gaph of the frame. Such two situations whe
the system does not fit into the frame gap after its assembly are shown in Figs. 3(d) and 3(e). In order to avoid such a
after assembly, the dimensions of the system have to fulfil inequalities (4) and (5).

All the above-described conditions hold in the situation when the system under consideration has all fenders, s
dimensions can be shown in the way presented in Fig. 2. If, however, the system analysed does not have one of the fe
the principle of omitting the condition holds, according to which the condition that includes the dimension connected wit
fender does not hold automatically.

This principle refers to the length of fenders only, and not to the length of gaps. For instance, let us assume tha
no inner fenderz12g in the system, and thus there is no dimensionl12g, then the geometrical conditions of assembly red
to the three conditions that can be described by inequalities (1), (2) and (4). An inquiring reader may ask a question
that there is no fenderz12g (dimensionl12g), if – with a relative motion of two subsystems – an impact in the position of
lacking fender occurs, then what are these conditions for? The answer is as follows: the designer should design this c
in such a way that an impact will not occur in this position. For example, in the position of the lacking fender, two subs
could omit simply each other and never impact on each other at all. An equally good answer follows from Fig. 4(a), w
dimensionl of the upper fender is equal to the suml + l, and there is no gap in the system. Then, we have the follow
2g 2g
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dimensions: for a body of the massm1 – l1g, l1d, l12d, for a body of the massm2 – l2d, l2g + l. On the other hand, anothe
reader can say: OK, but on the assumption that there is no, for instance, fenderz1g (dimensionl1g) in the system, condition
(1) and (4) are omitted. However, should not condition (1) be satisfied, if we assume thatl1g = 0? The answer is as follows: No
it is unnecessary, because in this particular case, we have still condition (5), which holds forh > l1d. Moreover, an example o
the system shown in Fig. 4(b) proves that the dimensionl1d does not have to be included inh.

The geometrical conditions of assembly have been presented in such a way that they hold for all, previously c
systems with one and two degrees of freedom. In the case of a system with one degree of freedom (there is no subsy
massm2), according to the principle of omitting the condition, condition (1) holds only.

4. Geometrical conditions of impacts

In the systems under consideration (Fig. 1), impacts can occur when the defined conditions are met. Impacts h
divided into two groups: outer impacts and the inner ones.

4.1. Geometrical conditions of outer impacts

By outer impacts are meant impacts on the frame, in which the fendersz1g, z2g, z1d andz2d (Fig. 1 or Fig. 2) take part.
The geometrical conditions that have to be satisfied by the system dimensions and that enable outer impacts are f

1) in order for the fenderz1g to impact on the frame, the fender lengthl1g has to be longer than the sum of the leng
l2g + l12g of the fendersz2g andz12g (Fig. 5(a)), respectively,

l1g > l2g + l12g, (6)

2) in order for the fenderz2g to impact on the frame, the sum of the fender lengthl2g and the inner gapl has to be bigger tha
the sum of the lengthsl1g andl12d of the fendersz1g andz12d (Fig. 5(b)), respectively,

l2g + l > l1g + l12d, (7)

3) in order for the fenderz1d to impact on the frame, the fender lengthl1d has to be longer than the sum of the lengthsl2d and
l12d of the fendersz2d andz12d (Fig. 5(c)), respectively,

l1d > l2d + l12d, (8)

4) in order for the fenderz2d to impact on the frame, the sum of the fender lengthl2d and the inner gap lengthl has to be
bigger than the sum of the lengthsl1d andl12g of the fendersz1d andz12g (Fig. 5(d)), respectively,

l2d + l > l1d + l12g. (9)

Figs. 5(a)–(c) and 5(d) show situations when outer impacts of the fendersz1g, z2g, z1d andz2d, respectively, will not take
place in the system. For example, Fig. 5(a) depicts a case when the fenderz1g will never be able to impact on the frame. T
obstacle lies in too high a value of the sum of lengths of the fendersz2g andz12g, and, strictly speaking, the blocking of th

(a) (b) (c) (d)

Fig. 5. Schemes of the systems in which outer impacts will never occur.
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upward motion of the subsystem of the massm1 by the inner fenderz12g. In order to prevent such a situation, condition
inequality (6) has to be met.

In the case of the geometrical conditions of outer impacts,the principle of omitting the condition holds, like for the assembl
conditions. If the system under consideration does not have one of outer fenders, then the condition that contains the
connected with this fender is omitted automatically. For instance, let us assume that the system does not have the ou
z1g, and thus it does not have the dimensionl1g, then the geometrical conditions of outer impacts of such a system as
the form of two inequalities only, namely inequality (8) and (9). An inquiring reader will say instantly: How is it? There
fenderz1g, and the condition for outer impacts with the fenderz2g (that is to say, inequality (7)) is omitted? Yes, it is so beca
inequality (7) is then satisfied automatically. When there is no fenderz1g, then an outer impact with the fenderz2g will always
occur, if such a fender exists of course.

The geometrical conditions of outer impacts have been presented in such a way that they hold for all, previously c
types of systems with one and two degrees of freedom. In the case of a one-degree-of-freedom system (no subsys
massm2), outer impacts always occur (as long as the fendersz1g andz1d exist), despite the fact that, according tothe principle
of omitting the condition, conditions (6)–(8) and (9) are omitted.

After the analysis conducted in such a way, a question arises if it is possible to determine such conditions that define
if outer impacts occur in a given system and what impacts take place. Will – in a real, assembled system – all oute
occur or only three or two selected ones or maybe just one impact? This question can be answered comprehensiv
to thegraphic method of ranges of outer impacts, which has been developed by the authors and which consists in plot
diagram with ranges of outer impacts in the system.

4.2. Graphic method of ranges of outer impacts

Fig. 6 shows a diagram of ranges of outer impacts. This is a diagram that has been referred only to two dimensio
subsystem of the massm1, namely the dimensionl1g and the dimensionl1d, i.e., the dimensions that are connected with ou
fenders (z1g andz1d) of this subsystem.

Let us notice that both the dimensions, i.e.l1g and l1d, on the diagram are directly connected with the first geomet
condition of assembly, which informs us about the fact that the sum of the link lengthsl1g + l1d has to be smaller than th
length of the gaph of the frame. Owing to this fact,the basic straight line (thickened line), described by the equationl1d =
h1 − l1g (h1 = l1g + l1d), has been drawn on the diagram, and any point taken from the region confined by it or belongi
always fulfils the inequalityl1g + l1d � h1.

The points of the basic straight linel1d = h1 − l1g that intersect the axesl1g andl1d are the points: on the axisl1g – value
l1g = h1 (l1d = 0), on the axisl1d – valuel1d = h1 (for l1g = 0). Both the values (the ultimate ones) are equal, which ma
this straight line directed at the angle of 45◦ with respect to both the axes of the diagram.

Apart from this, the diagram presents all conditions for outer impacts. The first two of them (6) and (7) are located
horizontal axisl1g. As the valuel2g+ l12g from condition (6) is lower than the valuel2g+ l − l12d from condition (7) (becaus
l − l12d> l12g⇒ l > l12g+ l12d, the third condition of assembly (3)), we place it as the closer one to “0” on the axisl1g, and
next, the second one of them. Thus, the range 0< l1g < h1 − l1d of the diagram we are interested in has been divided into t
subregions, namely: 0< l1g < l2g+ l12g, l2g+ l12g< l1g < l2g+ l − l12d, l2g+ l − l12d< l1g < h1 − l1d. We act analogously
with the two remaining conditions of outer impacts (8) and (9). The first value of them,l2d+ l12d is lower than the second valu
l2d+ l − l12g (becausel12d< l − l12g⇒ l > l12d+ l12g, the third condition of assembly (3)), we place it as the closer one to
on the axisl1d, and next, the second one of them. Thus, the range 0< l1d < h1 − l1g we are interested in on the plot has be
divided into three subregions, namely: 0< l1d < l2d + l12d, l2g + l12d< l1d < l2d + l − l12g, l2d + l − l12g< l1d < h1 − l1d.

The diagram prepared in this way is composed of nine rectangular regions (region A: 1-2-7-8, region B: 2-3-6-7, re
3-4-5-6, region D: 8-7-10-9, region E: 7-6-11-10, region F: 6-5-12-11, region G: 9-10-15-16, region H: 10-11-14-15, r
11-12-13-14) that describe various possibilities of outer impacts. Each upper left corner of the region, filled with the
z1g (regions: B, C, E, F, H, I), informs us about a possibility of occurrence of an outer impact of the upper subsystem
massm1 on the frame. Each lower left corner of the region, filled with the notationz1d (A, B, C, D, E, F), informs us about
possibility of occurrence of an outer impact of the lower subsystem of the massm1 on the frame. Each upper right corner of t
region, filled with the notationz2g (regions: A, B, D, E, G, H), informs us about a possibility of occurrence of an outer im
of the upper subsystem of the massm2 on the frame. Each lower right corner of the region, filled with the notationz2d (regions:
D, E, F, G, H, I), informs us about a possibility of occurrence of an outer impact of the lower subsystem of the massm2 on the
frame.

It follows from this diagram that in order to, for instance, have all cases of outer impacts (z1g, z2g, z1d, z2d), we have to be
in the region E, where the following conditions on the lengths of the fendersl1g andl1d: l2g + l12g< l1g < l2g + l − l12g and
l2d + l12d< l1d < l2d + l − l12g are fulfilled. Having established their values, we have to remember that the parameterh has to
be higher thanh = l + l , according to the previous assumptions. It can be the value, e.g.,h = h (then the pointa of the
1 1g 1d E E
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Fig. 6. Diagram of the ranges of outer impacts, applied in the graphic method.

region E lies below the straight line described by the equationl1dE= hE − l1gE). It is also possible to have all outer impac
i.e., to be in the region E without increasing the parameterh. We assume then thath = h1 = const and, for instance,l1d = const,
and the value of the parameterl1g has to satisfy the inequalityl1g < h1 − l1d (l1g andl1d must be values from the region E).

The structure of the diagram becomes simple when one of the fenders is lacking. For instance, when there is no fez1g,
that is to say, the dimensionl1g, only the axisl1d of the diagram holds, with the ranges of conditions for outer impacts that
on it (see Example 2 in Section 5, where examples of application of the diagram of ranges of outer impacts are given
advantages are described).

4.3. Geometrical conditions of inner impacts

By inner impacts we mean impacts between the subsystem of the massm1 and the subsystem of the massm2, that is say,
such impacts in which the fendersz12g andz12d (Figs. 1 or 2) take part.

The geometrical conditions that the system dimensions have to fulfil and that enable inner impacts are as follows:

1) in order for the subsystem of the massm1 to impact on the subsystem of the massm2 with the fenderz12g, the following
inequality has to be satisfied (Fig. 7(a)),

(l1g − l12g) + (l + l2d) < h, (10)
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Fig. 7. Schemes of the systems in which inner impacts will never occur.

2) in order for the subsystem of the massm1 to impact on the subsystem of the massm2 with the fenderz12d, the following
inequality has to be satisfied (Fig. 7(b)),

(l1d − l12d) + (l + l2g) < h. (11)

Fig. 7 shows a situation when inner impacts performed by the fendersz12g andz12g will never occur in the system.
Fig. 7(a) presents a case when the fenderz12g will never be active during the relative motion of the subsystem of the m

m1 upwards and the subsystem of the massm2 downwards. An obstacle lies in too high a value of the sum that consis
the addends denoted in the figure byl1g − l12g andl + l1d. This sum is bigger than the length of the gaph of the frame. The
activity of this fender is thus limited due to a lack of a possibility of further displacement of the subsystems with res
each other. Fig. 7(b) is a case when the fenderz12d will never be active during the relative motion of the subsystem of the m
m1 downwards and the subsystem of the massm2 upwards. An obstacle lies in too high a value of the sum that consists o
addends denoted in the figure byl1d− l12d andl + l2g. This sum is bigger than the length of the gaph of the frame. The activity
of this fender is thus also limited due to a lack of a possibility of further displacement of the subsystems with respec
other.

If the system under consideration does not have one inner fender, thenthe principle of omitting the condition, according to
which the condition, which includes the dimension related to this fender does not hold automatically, acts as well.

The geometrical conditions of inner impacts have been presented in such a way that they hold for all, previously c
systems with two degrees of freedom. In the case of a system with one degree of freedom (there is no subsystem of them2),
we do not consider inner impacts.

In the case of outer impacts, it was possible to prepare a general diagram of ranges of impacts. However, in th
inner impacts, the situation becomes slightly more complex. It is difficult to place the values of conditions for inner im
that is to say:l1g < h − (l + l2d − l12g) andl1d < h − (l + l2g − l12d), on the diagram from Fig. 6. For a particular case, a
Examples 1 and 2 of Subsections 5.1 and 5.2, respectively, the situation becomes much simpler. There, the examples
with the diagrams of ranges of outer and inner impacts have been given. It can be thus concluded that the diagram o
from Subsection 4.2 plays a very useful role. Having a particular system with given dimensions, we can define what
will occur in the system and which fenders should have their lengths changed to have another set of outer and inner im

In all conditions for outer and inner impacts, sharp inequalities occur. In the case we write these conditions in the
non-sharp inequalities, a situation arises in which outer impacts can occur simultaneously or outer and inner impacts
simultaneously.

5. Examples of applications of the diagram with ranges of impacts – discussion of the results

The examples presented in this section are aimed not only to examine the introduced geometrical conditions of
and impacts, but also to indicate a possibility of employment of the above-discussed method, that is to say, the graph
of ranges of impacts, in practical applications.
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5.1. Example 1

For the system presented in Fig. 2, check a possibility of assembly and occurrence of outer and inner impact
assumption of the following dimensionless lengths:l1g = 10, l1d = 3, l12g= 3, l12d= 1, l2g = 4, l = 5, l2d = 4, h = 17.

Solution:
I. Checking assembly conditions (1)–(5):

(1) 13= l1g + l1d < h = 17,

(2) 13= l2g + l + l2d < h = 17,

(3) 4= l12g+ l12d< l = 5,

(4) 15= l1g + l2d + l12d< h = 17,

(5) 10= l1d + l2g + l12g< h = 17.

All the assembly conditions are met. Otherwise, the designer would have to alter the lengths of the fenders or the l
the gaps.

II. Conditions for outer impacts (6)–(8):

(6) 7= l2g + l12g< l1g = 10,

(7) 8= l2g + l − l12d≯ l1g = 10,

(8) 5= l2d + l12d≮ l1d = 3,

(9) 6= l2d + l − l12g> l1d = 3.

In the case of outer impacts, not all conditions are satisfied. In the system where the dimensions are assigned in
never all outer fenders will be active. Despite the fact that the designer assembled all outer fenders, two of them, naz2g
andz1d, would always be passive (conditions (7) and (8) are not fulfilled).

III. Conditions for inner impacts (10) and (11):

(10) 16= (l1g − l12g) + (l + l2d) < h = 17,

(11) 11= (l1d − l12d) + (l + l2g) < h = 17.

As regards inner impacts, all conditions are met. In the system with the dimensions assigned in this way, both th
z12g andz12d will be active.

In order to place the geometrical conditions for inner impacts on the diagram of ranges of impacts, they have bee
in the way that determines the range of variables on the axesl1g and l1d, i.e.: l1g < h − (l + l2d − l12g) = 11 andl1d <

h − (l + l2g − l12d) = 9.
Fig. 8 shows a diagram with ranges of outer and inner impacts. The assigned data cause, as has already been

that the system after assembly can perform only two outer impacts (due tol1g = 10 andl1d = 3, we are in region I). They ar
impacts of the subsystem of the massm1 with the upper fenderz1g and impacts of the subsystem of the massm2, but with the
lower fenderz2d. It also results from the diagram that the system can perform both inner impacts (the ranges of inner
are marked with a dashed line on the diagram).

On the diagram, the straight line that fulfils the equationl1d = h1 − l1g, whereh1 = l1g + l1d = 13, is drawn. Let us notice
that the value of the parameterh1 plays the role of the boundary parameter if we want to enforce other sets of outer imp
the system.

Changing the lengths of the fendersl1g and l1d in such a way that the chosen values (l1gn and l1dn) belong to the region
below the straight linel1d = h1 − l1g, and not altering the remaining assigned valuesh, l12g, l12d, l2g, l andl2d at all, we can
have various sets of outer and inner impacts through a selection of the region A, D, G, E, H or I. It is possible owing to
that the sum of the lengthsl1gn+ l1dn will never exceedh1 and alwaysh1 < h. The additional information is the fact that whi
changing the valuesl1g andl1d, the ranges of inner impacts are displaced. It follows from this that in the regions D, G, E a
inner impacts will always take place and outer impacts defined by the conditions will occur as well (for the region D – w
fendersz2d, z1d andz2g, for the region G – with the fendersz2d andz2g, for the region E – with the fendersz1g, z2d, z1d andz2g,
for the region H – with the fendersz1g, z2d andz2g). In the case of the regions A and I, while changing the values of the len
of the fendersl1g andl1d into (now we consider consequently the values from the region below the straight linel1d = h1 − l1g)

the valuesl1gn and l1dn, a situation becomes slightly more complex. In the region A, outer impacts with the fendersz1d and
z can occur and both inner impacts can take place whenl + l − l < l < h− (l + l − l ) and 0< l < l + l
2g 2d 12g 1dn 2g 12d 1gn 2g 12g
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Fig. 8. Diagram of the ranges of inner impacts for Example 1 with the ranges of inner impacts.

(the area below the straight linel1d = h1 − l1g of the region A under the dashed region), or only inner impacts with the u
fenderz12g can occur whenh − (l2g + l12g) > l1dn > h − (l + l2g − l12d) and 0< l1gn < h1 − h + (l + l2g − l12d) (dashed
area of the region A, in which the lower fenderz12d is passive). In the region I, outer impacts with the fendersz1g andz2d can
occur, or both inner impacts can take place whenl2g+ l − l12d< l1gn< h− (l + l2d− l12g) and 0< l1dn< l2d+ l12d (the area
below the straight linel1d = h1 − l1g of the region I on the left-hand side of the dashed region), or only inner impacts wit
lower fenderz12d can occur ifh − (l + l2d − l12g< l1gn< h − (l2d + l12d) and 0< l1dn< h1 − h + (l + l2d − l12g) (dashed
area of the region I, in which the upper fenderz12g is passive).

For l1dn > h − (l2g + l12g) of the region A lying below the straight linel1d = h1 − l1g (the boundary value of one o
the conditions), assembly condition (5) is not met. Forl1gn > h − (l2d + l12d) of the region I lying below the straight lin
l1d = h1 − l1g (the boundary value of one of the conditions), assembly condition (4) is not fulfilled. There is, howe
possibility of exceeding these values, for instance, through an increase in the value of the parameterh (or alternations of
another parameter). While introducing changes in the values of the system parameters, we should however rememb
assembly conditions should always be satisfied and that if we change any values, then the ranges of conditions of inn
change as well.
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Some very significant conclusions follow from the analysis conducted. First of all, it is possible to design a system
a way that both inner fenders (z12g andz12d) will occur in it but only one will be active. Then a question arises: What
passive fender assembled for? Of course, it is unnecessary. The designer should not assemble passive fenders a
be remembered that if the system under consideration does not have one of the inner fenders, then the condition tha
the dimension related to this fender does not hold automatically, that is to say,the principle of omitting the condition holds.
Secondly, it is impossible to design a system in such a way that both inner fendersz12g andz12d will occur in it and both of
them will be passive (the intersection point of the dashed lines that describe the ranges of inner impacts always lies
straight linel1d = h − l1g). In the case of undesirable inner impacts, the system should be designed so that it does n
inner fenders. Then, in the system under consideration, the conditions that include dimensions related to the fendersz12g and
z12d do not hold automatically.

Also, let us notice (and this is an important advantage) that in all the described regions below the straight linel1d = h1 − l1g
(D, G, E, H, A only for l1d < h − (l2g + l12g) or I only for l1g < h − (l2d + l12d), it is possible to minimise the value ofh.
However, it should be remembered thath > h1 and that all the conditions of assembly should be met (in this case, for inst
h = 15.5) and that if this value is changed, then the ranges of conditions of inner impacts change as well.

The diagram of ranges of impacts has also such an advantage that it can be applied knowingly when it is necessary
valuesl1gn andl1dn from the region between the straight linesl1d = h1 − l1g, l1d = h − l1g or from the regions (even) abov
the straight linel1d = h − l1g. In the first case, if we select the values ofl1gn andl1dn from the regions A, B, C, E, F and I, an
remain absolutely the valueh = 17 constant, we should remember that the assembly conditions have to be met. In the
case (regions A, B, C, F and I), the inequalityl1gn+ l1dn> h holds, and thus the valueh should be changed into another valu
e.g.hh, such thathh > h and that the assembly conditions should always be satisfied. We should always remember th
alter the valueh, the ranges of the conditions of inner impacts change and the intersection point of the dashed lines (r
inner impacts) will be above the straight linel1d = hh − l1g.

Let us assume that in the above-considered system, the outer impactsz2g are additionally desirable, so we want to bring t
system to the situation from the region H, i.e., to impacts with the fendersz2g andz2d. To achieve this, we change the fend
lengthl1g into a value from this region. Let it be, for instance,l1gH = 7.5. The remaining parameters are left unchanged.
us notice that we do not have to change the length of the fenderz1d (z1dH = z1d = 3) either, as this value is included in th
region. In this case, we do not have to check the assembly conditions as the whole region H is situated below the str
l1d = h1 − l1g, andh1 < h (hereh can be decreased toh1, if necessary). To make sure, we can check the correctness o
assumptions concerning an occurrence of three outer impacts from this region:

(6) 7= l2g + l12g< l1gH = 7.5,

(7) 8= l2g + l − l12d> l1gH = 7.5,

(8) 5= l2d + l12d≮ l1dH = 3,

(9) 6= l2d + l − l12g> l1dH = 3.

The calculated conditions point out to the correctness of the assumptions concerning an occurrence of three oute
The following outer fenders:z1g, z2g andz2d will be active in the system and both inner impacts will occur (we do not nee
check the conditions for inner impacts either, asl1gH < l1g).

Next, let us assume that in the system under consideration all outer impacts are desirable, and thus we want to
system to the situation from the region E, i.e.,z1g, z2gz1d andz2d. In this case, we change the fender lengthsl1g andl1d into
the values, e.g.l1gE= 7.5 andl1dE = 5.5. Let us notice that in this case, we do not have to check the conditions of asse
Althoughl1gE+ l1dE= h1, buth1 < h (hereh cannot be decreased toh1) and the whole region E is situated below the strai
line l1d = h − l1g. To make sure, we can check the correctness of the assumptions concerning an occurrence of all th
impacts from this region:

(6) 7= l2g + l12g< l1gE= 7.5,

(7) 8= l2g + l − l12d> l1gE= 7.5,

(8) 5= l2d + l12d< l1dE= 5.5,

(9) 6= l2d + l − l12g> l1dE= 5.5.

The fulfilment of the above-mentioned conditions points out to the correctness of the assumptions made. In the sy
outer fenders will be active and both inner impacts will take place.
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5.2. Example 2

For the system shown in Fig. 4(b), check a possibility of assembly and occurrence of outer and inner impacts
assumption of the following dimensionless lengths:l1d = 10, l12d= 3, l2g + l = 2, l2d = 4, h = 8.

Solution:
I. Checking the conditions of assembly:

(2) 6= l2g + l + l2d < h = 8.

Assembly conditions (1), (3), (4) and (5) do not hold owing to a special structure of the system, whereas conditio
satisfied.

II. Conditions for outer impacts:

(8) 7= l2d + l12d< l1d = 10.

In the case of outer impacts, conditions (6), (7) and (9) are omitted. Condition (8) is fulfilled. In the system with the
of the fenders assigned in this way, outer impacts with the lower fenderz1d will take place. Despite the fact that conditio
(7) and (9) for outer impactsz2g andz2d are omitted, these impacts will always occur in it, owing to a special structure o
system (a lack of the fenders that could prevent it, see Figs. 5(b) and 5(d)).

III. Conditions for inner impacts:

(11) 9= (l1d − l12d) + (l + l2g) ≮ h = 8.

In the case of inner impacts, condition (10) is omitted, whereas condition (11) is not met. In the system with the
of the links assigned in this way, inner impacts with the fenderz12d will not occur. Although there is no parameterl1g in the
system, but in Fig. 9 it has been treated as the dimension equal to zero and the straight linel1d = h1 − l1g has been drawn. W
should remember, however, that in this case only the vertical axis holds (for the example given, the range D of this axi

Let us notice that here the value of the parameterh1 does not play the part of the boundary parameter if we want to en
other sets of impacts in the system. Owing to a special structure of the system,h1 does not have to be smaller thanh, as the

Fig. 9. Diagram of the ranges of outer impacts for Example 2.
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fender lengthl1d is not included in the gaph. If we change the fender lengthl1d into the lengthl1dn such thatl1dn> l1d, we do
not cause any changes in the behaviour of the system. We observe the same set of impacts, that is to say, outer impa
lower fenderz1d and outer impacts of the second subsystem with the fendersz2g andz2d. We observe the same situation if w
change the lengthl1d into the lengthl1dn from the rangel1d > l1dn> h − (l + l2g − l12d). However, if we decrease the leng
l1d to the lengthl1dn from the rangel2d + l12d < l1dn < h − (l + l2g − l12d), then apart from outer impacts with the fende
z1d, z2d andz2g, also inner impacts can be observed with the fenderz12d, which stops being passive (the system designe
the designer is fully used now – all fenders are active; we are still in the range D). Let us notice also that when we decl1d
to the lengthl1dn from the range 0< l1dn < l2d + l12d, then the fenderz1d stops being active (range G). In the system, b
outer impacts take place with the second subsystem and inner impacts occur with the fenderz12d.

5.3. Discussion of the examples

Both in Example 1 and 2 (Subsections 5.1 and 5.2, respectively), the possibilities of introducing changes in sets o
due to changes in the link lengthsl1d andl1g have been presented.

Now, let us notice that in Example 2 (Subsection 5.2), if we want to make the inner fender active, it might be easier to
its length. It is enough to increase its lengthl12d to the valuel12dn= 5. After this change, condition for an outer impact (8)
still satisfied:

(8) 9= l2d + l12dn< l1d = 10.

If the condition for an inner impact:

(11) 7= (l1d − l12dn) + (l + l2g) < h = 8

holds, then the fenderz12dnbecomes active. At such a slight correction of the length of one of the links in the system, the
impactsz1d, z2g, z2d still occur and the inner impactz12dn takes place as well (Fig. 10).

Fig. 10. Diagram of the ranges of outer impacts.
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It is also worth to draw the reader’s attention to the fact that in the case of a greater change in the lengthl12d, for instance,
z12dn= 7, we make the fenderz1d passive in the system, because: 11= l2d + l12dn≮ l1d = 10. The inner fender is, howeve
still active, because condition 5= (l1d − l12dn) + (l + l2g) < h = 8 is fulfilled. Changing the value of the length of the inn
fenderl12d to a bigger one, it will remain active and the fenderz1d will be active, if l12dn satisfies the following inequality
l1d−h+ (l + l2g) < l12dn< l1d− l2d. In Example 2 (Subsection 5.2), the changes of the parameters connected to the su
of the massm1 have been applied, thus it was not necessary to check the conditions of assembly in any of these consi
because this subsystem, due to its structure, did not have to be included in the gaph of the frame.

In general, one can conclude that the following principle holds: if the lengths of the outer fendersl1g andl1d aim at zero,
then the inner fendersz12g andz12d tend to be active or, as in Example 2, if the lengths of the inner fendersl12g andl12d aim
at infinity, then the outer fendersz1g andz1d tend to be passive.

6. Conclusions

The object of the investigations presented are mechanical systems with impacts with one and two degrees of free
have been classified previously by the authors of the present study. The models of the systems under consideratio
bodies that can perform a motion along a straight line without a possibility of rotations.

The geometrical conditions of assembly and the geometrical conditions of outer and inner impacts that can occ
operation have been determined.The principle of omitting the condition, according to which the condition that includes t
dimension related to this fender is omitted automatically in the system, has been developed. This principle holds bo
conditions of assembly and for the conditions for outer and inner impacts.

In the case the conditions for impacts are written by means of non-sharp inequalities, a situation arises in which simu
outer impacts or simultaneous outer and inner impacts are possible in the system.

In the study, the so-calledgraphic method of ranges of impacts that allow us to answer numerous questions, for instanc
and what kind of impacts can occur in the system, has been proposed. This method also leads to some conclusions, am
the most important are as follows: (1) it is possible to design a system with a predetermined set of outer and inner impa
is possible to identify a passive fender.

From the viewpoint of the classification of mechanical systems with impacts (Blazejczyk-Okolewska et al., 200
system that has a passive fender (that has been identified with the graphic method of ranges of impacts) is the so-c
combination and should be either eliminated through a change in the system parameters (lengths of the fenders) or
make it an apt combination.

On the basis of the examples included in this study, it has been stated that there is a possibility to design such a m
system in which all outer and inner fenders will be active, and the obtained system will be thebasic impact system, according
to the classification of mechanical systems with impacts (Blazejczyk-Okolewska et al., 2004). An analysis of the dyn
such a system will be interesting, according to the authors’ opinion.

The results of the present study, based on rigid bodies without any deformation in contact points, are exactly vali
beginning of impacts – for the first touch of impacting bodies. If the contacts between bodies are realized by means
stops, simultaneous contacts in different impacting pairs could occur.

The present work provides much information of the fundamental nature that broadens the scope of knowledge on th
of mechanical systems with impacts. This information can be applied in future to calculations and design of the above-d
structures. The study can be the basis for starting investigations on mechanical systems with impacts, in which the
multidimensional as well.
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